Imported Genode release 11.11

This commit is contained in:
Genode Labs
2011-12-22 16:19:25 +01:00
committed by Christian Helmuth
parent 6bcc9aef0e
commit da4e1feaa5
2462 changed files with 320115 additions and 3 deletions

12
base/README Normal file
View File

@@ -0,0 +1,12 @@
This is generic part of the Genode implementation. It consists of two parts:
:_Core_: is the ultimate root of the Genode application tree
and provides abstractions for the lowest-level hardware resources
such as RAM, ROM, CPU, and generic device access. All generic parts of Core
can be found here - for system-specific implementations refer to the
appropriate 'base-<system>' directory.
:_Base libraries and protocols_: that are used by each Genode component
to interact with other components. This is the glue that holds everything
together.

16
base/etc/README Normal file
View File

@@ -0,0 +1,16 @@
This directory contains default configuration files that are used
by the '<role>.mk' files in the 'mk/' directory. By
convention, configuration files are first read from here
followed by a corresponding config file in '<builddir>/etc/'.
Convention
~~~~~~~~~~
We include config files directly into makefiles. So the basic
makefile syntax applies here, too.
Config files should
* Have '.conf' as filename extension.
* Use only assignments but provide no rules or other 'make'-magic.
* Not include other files!

57
base/etc/tools.conf Normal file
View File

@@ -0,0 +1,57 @@
#
# The following options let you define non-default tools to use
#
# CUSTOM_LD is only used for the progressive linking of libraries.
# It is not used for linking the final target.
#
#CUSTOM_CC = gcc
#CUSTOM_CXX = g++
#CUSTOM_AS = as
#CUSTOM_LD = ld
#
# For using a cross-compile tool chain, the names of all
# binutils and compilers are typically prefixed by the
# target platform. Instead of defining CUSTOM_* variables
# individually for each tool, the prefix can be defined
# via the following variable.
#
ifeq ($(filter-out $(SPECS),x86),)
CROSS_DEV_PREFIX ?= /usr/local/genode-gcc/bin/genode-x86-
endif
ifeq ($(filter-out $(SPECS),arm),)
CROSS_DEV_PREFIX ?= /usr/local/genode-gcc/bin/genode-arm-
endif
#
# We use libsupc++ from g++ version 3 because
# this version does not use thread-local storage
# via the gs register. This is an interim solution.
#
#CUSTOM_CXX_LIB = g++-3.4
#
# The default optimization level used for compiling is -O2.
# By defining the variable CC_OLEVEL, you can override this
# default value, for example to optimize your binaries for size.
#
#CC_OLEVEL = -Os
#
# If CC_OPT should be extended please use concatenation syntax like:
#
#CC_OPT += -ffunction-sections -fdata-sections
#
# If CXX_LINK_OPT (linker options given to CXX) should be extended please use
# concatenation syntax like:
#
#CXX_LINK_OPT += -Wl,-gc-sections
#
# On non-GNU systems, you may direct the build system to use GNU-
# specific tools.
#
#TAC ?= /opt/gnu/bin/tac
#GNU_FIND ?= /opt/gnu/bin/find
#GNU_XARGS ?= /opt/gnu/bin/xargs

View File

@@ -0,0 +1,60 @@
/*
* \brief Standard fixed-width integer types
* \author Christian Helmuth
* \author Norman Feske
* \date 2006-05-10
*
* In contrast to most Genode header files, which are only usable for C++,
* this file is a valid C header file because a lot of existing C-based
* software relies on fixed-size integer types. These types, however, are
* platform specific but cannot be derived from the compiler's built-in
* types. Normally, the platform-dependent part of a C library provides
* these type definitions. This header file provides a single header for
* C and C++ programs that are not using a C library but need fixed-width
* integer types.
*
* All type definition are prefixed with 'genode_'. If included as a C++
* header, the types are also defined within the 'Genode' namespace.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__32BIT__BASE__FIXED_STDINT_H_
#define _INCLUDE__32BIT__BASE__FIXED_STDINT_H_
/*
* Fixed-size types usable from both C and C++ programs
*/
typedef signed char genode_int8_t;
typedef unsigned char genode_uint8_t;
typedef signed short int genode_int16_t;
typedef unsigned short int genode_uint16_t;
typedef signed int genode_int32_t;
typedef unsigned int genode_uint32_t;
typedef signed long long int genode_int64_t;
typedef unsigned long long int genode_uint64_t;
/*
* Types residing within Genode's C++ namespace
*/
#ifdef __cplusplus
namespace Genode {
typedef genode_int8_t int8_t;
typedef genode_uint8_t uint8_t;
typedef genode_int16_t int16_t;
typedef genode_uint16_t uint16_t;
typedef genode_int32_t int32_t;
typedef genode_uint32_t uint32_t;
typedef genode_int64_t int64_t;
typedef genode_uint64_t uint64_t;
}
#endif
#endif /* _INCLUDE__32BIT__BASE__FIXED_STDINT_H_ */

View File

@@ -0,0 +1,50 @@
/*
* \brief Standard fixed-width integer types
* \author Christian Helmuth
* \author Norman Feske
* \date 2006-05-10
*
* For additional information, please revisit the 32bit version of this file.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__64BIT__BASE__FIXED_STDINT_H_
#define _INCLUDE__64BIT__BASE__FIXED_STDINT_H_
/*
* Fixed-size types usable from both C and C++ programs
*/
typedef signed char genode_int8_t;
typedef unsigned char genode_uint8_t;
typedef signed short int genode_int16_t;
typedef unsigned short int genode_uint16_t;
typedef signed int genode_int32_t;
typedef unsigned int genode_uint32_t;
typedef signed long int genode_int64_t;
typedef unsigned long int genode_uint64_t;
/*
* Types residing within Genode's C++ namespace
*/
#ifdef __cplusplus
namespace Genode {
typedef genode_int8_t int8_t;
typedef genode_uint8_t uint8_t;
typedef genode_int16_t int16_t;
typedef genode_uint16_t uint16_t;
typedef genode_int32_t int32_t;
typedef genode_uint32_t uint32_t;
typedef genode_int64_t int64_t;
typedef genode_uint64_t uint64_t;
}
#endif
#endif /* _INCLUDE__64BIT__BASE__FIXED_STDINT_H_ */

3
base/include/README Normal file
View File

@@ -0,0 +1,3 @@
This directory contains include files of interfaces that are exported
by components to be used by other components. Each subdirectory corresponds
to the component exporting the interface.

View File

@@ -0,0 +1,32 @@
/*
* \brief CPU state
* \author Norman Feske
* \author Stefan Kalkowski
* \date 2011-05-06
*/
/*
* Copyright (C) 2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ARM__CPU__CPU_STATE_H_
#define _INCLUDE__ARM__CPU__CPU_STATE_H_
#include <base/stdint.h>
namespace Genode {
struct Cpu_state
{
addr_t ip;
addr_t sp;
addr_t r[13];
addr_t lr;
addr_t cpsr;
};
}
#endif /* _INCLUDE__ARM__CPU__CPU_STATE_H_ */

View File

@@ -0,0 +1,205 @@
/*
* \brief Generic allocator interface
* \author Norman Feske
* \date 2006-04-16
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__ALLOCATOR_H_
#define _INCLUDE__BASE__ALLOCATOR_H_
#include <base/stdint.h>
#include <base/exception.h>
namespace Genode {
class Allocator
{
public:
/*********************
** Exception types **
*********************/
class Out_of_memory : public Exception { };
/**
* Destructor
*/
virtual ~Allocator() { }
/**
* Allocate block
*
* \param size block size to allocate
* \param out_addr resulting pointer to the new block,
* undefined in the error case
* \return true on success
*/
virtual bool alloc(size_t size, void **out_addr) = 0;
/**
* Allocate typed block
*
* This template allocates a typed block returned as a pointer to
* a non-void type. By providing this function, we prevent the
* compiler from warning us about "dereferencing type-punned
* pointer will break strict-aliasing rules".
*/
template <typename T> bool alloc(size_t size, T **out_addr)
{
void *addr = 0;
bool ret = alloc(size, &addr);
*out_addr = (T *)addr;
return ret;
}
/**
* Free block a previously allocated block
*/
virtual void free(void *addr, size_t size) = 0;
/**
* Return total amount of backing store consumed by the allocator
*/
virtual size_t consumed() { return 0; }
/**
* Return meta-data overhead per block
*/
virtual size_t overhead(size_t size) = 0;
/***************************
** Convenience functions **
***************************/
/**
* Allocate block and signal error as an exception
*
* \param size block size to allocate
* \return pointer to the new block
* \throw Out_of_memory
*/
void *alloc(size_t size)
{
void *result = 0;
if (!alloc(size, &result))
throw Out_of_memory();
return result;
}
};
class Range_allocator : public Allocator
{
public:
/**
* Destructor
*/
virtual ~Range_allocator() { }
/**
* Add free address range to allocator
*/
virtual int add_range(addr_t base, size_t size) = 0;
/**
* Remove address range from allocator
*/
virtual int remove_range(addr_t base, size_t size) = 0;
/**
* Allocate block
*
* \param size size of new block
* \param out_addr start address of new block,
* undefined in the error case
* \param align alignment of new block specified
* as the power of two
* \return true on success
*/
virtual bool alloc_aligned(size_t size, void **out_addr, int align = 0) = 0;
enum Alloc_return { ALLOC_OK = 0, OUT_OF_METADATA = -1, RANGE_CONFLICT = -2 };
/**
* Allocate block at address
*
* \param size size of new block
* \param addr desired address of block
*
* \return 'ALLOC_OK' on success, or
* 'OUT_OF_METADATA' if meta-data allocation failed, or
* 'RANGE_CONFLICT' if specified range is occupied
*/
virtual Alloc_return alloc_addr(size_t size, addr_t addr) = 0;
/**
* Free a previously allocated block
*
* NOTE: We have to declare the 'Allocator::free' function here
* as well to make gcc happy.
*/
virtual void free(void *addr) = 0;
virtual void free(void *addr, size_t size) = 0;
/**
* Return the sum of available memory
*
* Note that the returned value is not neccessarily allocatable
* because the memory may be fragmented.
*/
virtual size_t avail() = 0;
/**
* Check if address is inside an allocated block
*
* \param addr address to check
*
* \return true if address is inside an allocated block, false
* otherwise
*/
virtual bool valid_addr(addr_t addr) = 0;
};
/**
* Destroy object
*
* For destroying an object, we need to specify the allocator
* that was used by the object. Because we cannot pass the
* allocator directly to the delete operator, we mimic the
* delete operator using this template function.
*
* \param T implicit object type
*
* \param alloc allocator from which the object was allocated
* \param obj object to destroy
*/
template <typename T>
void destroy(Allocator *alloc, T *obj)
{
if (!obj)
return;
/* call destructors */
obj->~T();
/* free memory at the allocator */
alloc->free(obj, sizeof(T));
}
}
void *operator new (Genode::size_t size, Genode::Allocator *allocator);
void *operator new [] (Genode::size_t size, Genode::Allocator *allocator);
#endif /* _INCLUDE__BASE__ALLOCATOR_H_ */

View File

@@ -0,0 +1,325 @@
/*
* \brief Interface of AVL-tree-based allocator
* \author Norman Feske
* \date 2006-04-16
*
* Each block of the managed address space is present in two AVL trees,
* one tree ordered by the base addresses of the blocks and one tree ordered
* by the available capacity within the block.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__ALLOCATOR_AVL_H_
#define _INCLUDE__BASE__ALLOCATOR_AVL_H_
#include <base/allocator.h>
#include <base/tslab.h>
#include <util/avl_tree.h>
#include <util/misc_math.h>
namespace Genode {
class Allocator_avl_base : public Range_allocator
{
private:
static bool _sum_in_range(addr_t addr, addr_t offset) {
return (~0UL - addr > offset); }
protected:
class Block : public Avl_node<Block>
{
private:
addr_t _addr; /* base address */
size_t _size; /* size of block */
bool _used; /* block is in use */
short _id; /* for debugging */
size_t _max_avail; /* biggest free block size of subtree */
/**
* Request max_avail value of subtree
*/
inline size_t _child_max_avail(bool side) {
return child(side) ? child(side)->max_avail() : 0; }
/**
* Query if block can hold a specified subblock
*
* \param n number of bytes
* \param align alignment (power of two)
* \return true if block fits
*/
inline bool _fits(size_t n, unsigned align = 1) {
return ((align_addr(addr(), align) >= addr()) &&
_sum_in_range(align_addr(addr(), align), n) &&
(align_addr(addr(), align) - addr() + n <= avail())); }
public:
/**
* Avl_node interface: compare two nodes
*/
bool higher(Block *a) {
return a->_addr >= _addr; }
/**
* Avl_node interface: update meta data on node rearrangement
*/
void recompute();
/**
* Accessor functions
*/
inline int id() { return _id; }
inline addr_t addr() { return _addr; }
inline size_t avail() { return _used ? 0 : _size; }
inline size_t size() { return _size; }
inline bool used() { return _used; }
inline size_t max_avail() { return _max_avail; }
inline void used(bool used) { _used = used; }
enum { FREE = false, USED = true };
/**
* Constructor
*
* This constructor is called from meta-data allocator during
* initialization of new meta-data blocks.
*/
Block() : _addr(0), _size(0), _used(0), _max_avail(0) { }
/**
* Constructor
*/
Block(addr_t addr, size_t size, bool used)
: _addr(addr), _size(size), _used(used),
_max_avail(used ? 0 : size)
{
static int num_blocks;
_id = ++num_blocks;
}
/**
* Find best-fitting block
*/
Block *find_best_fit(size_t size, unsigned align = 1);
/**
* Find block that contains the specified address range
*/
Block *find_by_address(addr_t addr, size_t size = 0,
bool check_overlap = 0);
/**
* Return sum of available memory in subtree
*/
size_t avail_in_subtree(void);
/**
* Debug hooks
*/
void dump();
void dump_dot(int indent = 0);
};
private:
Avl_tree<Block> _addr_tree; /* blocks sorted by base address */
Allocator *_md_alloc; /* meta-data allocator */
size_t _md_entry_size; /* size of block meta-data entry */
/**
* Alloc meta-data block
*/
Block *_alloc_block_metadata();
/**
* Alloc two meta-data blocks in a transactional way
*/
bool _alloc_two_blocks_metadata(Block **dst1, Block **dst2);
/**
* Create new block
*/
int _add_block(Block *block_metadata,
addr_t base, size_t size, bool used);
/**
* Destroy block
*/
void _destroy_block(Block *b);
/**
* Cut specified area from block
*
* The original block gets replaced by (up to) two smaller blocks
* with remaining space.
*/
void _cut_from_block(Block *b, addr_t cut_addr, size_t cut_size,
Block *dst1, Block *dst2);
protected:
/**
* Find block by specified address
*/
Block *_find_by_address(addr_t addr, size_t size = 0,
bool check_overlap = 0) const
{
Block *b = static_cast<Block *>(_addr_tree.first());
/* if the tree has one or more nodes, start search */
return b ? b->find_by_address(addr, size, check_overlap) : 0;
}
/**
* Constructor
*
* This constructor can only be called from a derived class that
* provides an allocator for block meta-data entries. This way,
* we can attach custom information to block meta data.
*/
Allocator_avl_base(Allocator *md_alloc, size_t md_entry_size) :
_md_alloc(md_alloc), _md_entry_size(md_entry_size) { }
public:
/**
* Return address of any block of the allocator
*
* \param out_addr result that contains address of block
* \return true if block was found or
* false if there is no block available
*
* If no block was found, out_addr is set to zero.
*/
bool any_block_addr(addr_t *out_addr);
/**
* Debug hook
*/
void dump_addr_tree(Block *addr_node = 0);
/*******************************
** Range allocator interface **
*******************************/
int add_range(addr_t base, size_t size);
int remove_range(addr_t base, size_t size);
bool alloc_aligned(size_t size, void **out_addr, int align = 0);
Alloc_return alloc_addr(size_t size, addr_t addr);
void free(void *addr);
size_t avail();
bool valid_addr(addr_t addr);
/*************************
** Allocator interface **
*************************/
bool alloc(size_t size, void **out_addr) {
return Allocator_avl_base::alloc_aligned(size, out_addr); }
void free(void *addr, size_t) { free(addr); }
/**
* Return the memory overhead per Block
*
* The overhead is a rough estimation. If a block is somewhere
* in the middle of a free area, we could consider the meta data
* for the two free subareas when calculating the overhead.
*
* The 'sizeof(umword_t)' represents the overhead of the meta-data
* slab allocator.
*/
size_t overhead(size_t size) { return sizeof(Block) + sizeof(umword_t); }
};
/**
* AVL-based allocator with custom meta data attached to each block.
*
* \param BMDT block meta-data type
*/
template <typename BMDT>
class Allocator_avl_tpl : public Allocator_avl_base
{
private:
/*
* Pump up the Block class with custom meta-data type
*/
class Block : public Allocator_avl_base::Block, public BMDT { };
Tslab<Block,1024> _metadata; /* meta-data allocator */
char _initial_md_block[1024]; /* first (static) meta-data block */
public:
/**
* Constructor
*
* \param metadata_chunk_alloc pointer to allocator used to allocate
* meta-data blocks. If set to 0,
* use ourself for allocating our
* meta-data blocks. This works only
* if the managed memory is completely
* accessible by the allocator.
*/
explicit Allocator_avl_tpl(Allocator *metadata_chunk_alloc) :
Allocator_avl_base(&_metadata, sizeof(Block)),
_metadata((metadata_chunk_alloc) ? metadata_chunk_alloc : this,
(Slab_block *)&_initial_md_block) { }
/**
* Assign custom meta data to block at specified address
*/
void metadata(void *addr, BMDT bmd) const
{
Block *b = static_cast<Block *>(_find_by_address((addr_t)addr));
if (b) *static_cast<BMDT *>(b) = bmd;
}
/**
* Return meta data that was attached to block at specified address
*/
BMDT* metadata(void *addr) const
{
Block *b = static_cast<Block *>(_find_by_address((addr_t)addr));
return b && b->used() ? b : 0;
}
int add_range(addr_t base, size_t size)
{
/*
* We disable the slab block allocation while
* processing add_range to prevent avalanche
* effects when (slab trying to make an allocation
* at Allocator_avl that is empty).
*/
Allocator *md_bs = _metadata.backing_store();
_metadata.backing_store(0);
int ret = Allocator_avl_base::add_range(base, size);
_metadata.backing_store(md_bs);
return ret;
}
};
/**
* Define AVL-based allocator without any meta data attached to each block
*/
class Empty { };
typedef Allocator_avl_tpl<Empty> Allocator_avl;
}
#endif /* _INCLUDE__BASE__ALLOCATOR_AVL_H_ */

View File

@@ -0,0 +1,93 @@
/*
* \brief A guard for arbitrary allocators to limit memory exhaustion
* \author Stefan Kalkowski
* \date 2010-08-20
*/
/*
* Copyright (C) 2010-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _ALLOCATOR_GUARD_H_
#define _ALLOCATOR_GUARD_H_
#include <base/allocator.h>
#include <base/printf.h>
#include <base/stdint.h>
namespace Genode {
/**
* This class acts as guard for arbitrary allocators to limit
* memory exhaustion
*/
class Allocator_guard : public Allocator
{
private:
Allocator *_allocator; /* allocator to guard */
size_t _amount; /* total amount */
size_t _consumed; /* already consumed bytes */
public:
Allocator_guard(Allocator *allocator, size_t amount)
: _allocator(allocator), _amount(amount), _consumed(0) { }
/**
* Extend allocation limit
*/
void upgrade(size_t additional_amount) {
_amount += additional_amount; }
/*************************
** Allocator interface **
*************************/
/**
* Allocate block
*
* \param size block size to allocate
* \param out_addr resulting pointer to the new block,
* undefined in the error case
* \return true on success
*/
bool alloc(size_t size, void **out_addr)
{
if ((_amount - _consumed) < (size + _allocator->overhead(size))) {
PWRN("Quota exceeded! amount=%zd, size=%zd, consumed=%zd",
_amount, (size + _allocator->overhead(size)), _consumed);
return false;
}
bool b = _allocator->alloc(size, out_addr);
if (b)
_consumed += size + _allocator->overhead(size);
return b;
}
/**
* Free block a previously allocated block
*/
void free(void *addr, size_t size)
{
_allocator->free(addr, size);
_consumed -= size - _allocator->overhead(size);
}
/**
* Return total amount of backing store consumed by the allocator
*/
size_t consumed() { return _consumed; }
/**
* Return meta-data overhead per block
*/
size_t overhead(size_t size) { return _allocator->overhead(size); }
};
}
#endif /* _ALLOCATOR_GUARD_H_ */

View File

@@ -0,0 +1,28 @@
/*
* \brief Support for blocking operations
* \author Norman Feske
* \date 2007-09-06
*
* In Genode, two operations may block a thread,
* waiting at a lock or performing an IPC call.
* Both operations may be canceled when killing
* the thread. In this case, the thread unblocks
* and throws an exception, and therefore, is able
* to clean up the thread state before exiting.
*/
/*
* Copyright (C) 2007-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__BLOCKING_H_
#define _INCLUDE__BASE__BLOCKING_H_
#include <base/exception.h>
namespace Genode { class Blocking_canceled : public Exception { }; }
#endif /* _INCLUDE__BASE__BLOCKING_H_ */

View File

@@ -0,0 +1,94 @@
/*
* \brief Basic locking primitive
* \author Norman Feske
* \date 2006-07-26
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__CANCELABLE_LOCK_H_
#define _INCLUDE__BASE__CANCELABLE_LOCK_H_
#include <base/lock_guard.h>
#include <base/native_types.h>
#include <base/blocking.h>
namespace Genode {
class Cancelable_lock
{
private:
class Applicant
{
private:
Native_thread_id _tid;
Applicant *_to_wake_up;
public:
explicit Applicant(Native_thread_id tid)
: _tid(tid), _to_wake_up(0) { }
void applicant_to_wake_up(Applicant *to_wake_up) {
_to_wake_up = to_wake_up; }
Applicant *applicant_to_wake_up() { return _to_wake_up; }
Native_thread_id tid() { return _tid; }
/**
* Called from previous lock owner
*/
void wake_up();
bool operator == (Applicant &a) { return _tid == a.tid(); }
bool operator != (Applicant &a) { return _tid != a.tid(); }
};
/*
* Note that modifications of the applicants queue must be performed
* atomically. Hence, we use the additional spinlock here.
*/
volatile int _spinlock_state;
volatile int _state;
Applicant* volatile _last_applicant;
Applicant _owner;
public:
enum State { LOCKED, UNLOCKED };
/**
* Constructor
*/
explicit Cancelable_lock(State initial = UNLOCKED);
/**
* Try to aquire lock an block while lock is not free
*
* This function may throw a Genode::Blocking_canceled exception.
*/
void lock();
/**
* Release lock
*/
void unlock();
/**
* Lock guard
*/
typedef Genode::Lock_guard<Cancelable_lock> Guard;
};
}
#endif /* _INCLUDE__BASE__CANCELABLE_LOCK_H_ */

View File

@@ -0,0 +1,291 @@
/*
* \brief Capability
* \author Norman Feske
* \date 2011-05-22
*
* A typed capability is a capability tied to one specifiec RPC interface
*/
/*
* Copyright (C) 2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__CAPABILITY_H_
#define _INCLUDE__BASE__CAPABILITY_H_
#include <util/string.h>
#include <base/rpc.h>
#include <base/native_types.h>
namespace Genode {
/**
* Forward declaration needed for internal interfaces of 'Capability'
*/
class Ipc_client;
/**
* Capability that is not associated with a specific RPC interface
*/
typedef Native_capability Untyped_capability;
/**
* Capability referring to a specific RPC interface
*
* \param RPC_INTERFACE class containing the RPC interface declaration
*/
template <typename RPC_INTERFACE>
class Capability : public Untyped_capability
{
private:
/**
* Insert RPC arguments into the message buffer
*/
template <typename ATL>
void _marshal_args(Ipc_client &ipc_client, ATL &args);
void _marshal_args(Ipc_client &, Meta::Empty &) { }
/**
* Unmarshal single RPC argument from the message buffer
*/
template <typename T>
void _unmarshal_result(Ipc_client &ipc_client, T &arg,
Meta::Overload_selector<Rpc_arg_out>);
template <typename T>
void _unmarshal_result(Ipc_client &ipc_client, T &arg,
Meta::Overload_selector<Rpc_arg_inout>);
template <typename T>
void _unmarshal_result(Ipc_client &, T &arg,
Meta::Overload_selector<Rpc_arg_in>) { }
/**
* Read RPC results from the message buffer
*/
template <typename ATL>
void _unmarshal_results(Ipc_client &ipc_client, ATL &args);
void _unmarshal_results(Ipc_client &, Meta::Empty &) { }
/**
* Check RPC return code for the occurrence of exceptions
*
* A server-side exception is indicated by a non-zero exception
* code. Each exception code corresponds to an entry in the
* exception type list specified in the RPC function declaration.
* The '_check_for_exception' function template throws the
* exception type belonging to the received exception code.
*/
template <typename EXC_TL>
void _check_for_exceptions(Rpc_exception_code const exc_code,
Meta::Overload_selector<EXC_TL>)
{
enum { EXCEPTION_CODE = RPC_EXCEPTION_BASE - Meta::Length<EXC_TL>::Value };
if (exc_code == EXCEPTION_CODE)
throw typename EXC_TL::Head();
_check_for_exceptions(exc_code, Meta::Overload_selector<typename EXC_TL::Tail>());
}
void _check_for_exceptions(Rpc_exception_code const,
Meta::Overload_selector<Meta::Empty>) { }
/**
* Perform RPC call, arguments passed a as nested 'Ref_tuple' object
*/
template <typename IF>
void _call(typename IF::Client_args &args, typename IF::Ret_type &ret);
/**
* Shortcut for querying argument types used in 'call' functions
*/
template <typename IF, unsigned I>
struct Arg
{
typedef typename Meta::Type_at<typename IF::Client_args, I>::Type Type;
};
template <typename FROM_RPC_INTERFACE>
Untyped_capability
_check_compatibility(Capability<FROM_RPC_INTERFACE> const &cap)
{
FROM_RPC_INTERFACE *from = 0;
RPC_INTERFACE *to = from;
(void)to;
return cap;
}
public:
typedef RPC_INTERFACE Rpc_interface;
/**
* Constructor
*
* This implicit constructor checks at compile time for the
* compatibility of the source and target capability types. The
* construction is performed only if the target capability type is
* identical to or a base type of the source capability type.
*/
template <typename FROM_RPC_INTERFACE>
Capability(Capability<FROM_RPC_INTERFACE> const &cap)
: Untyped_capability(_check_compatibility(cap))
{ }
/**
* Default constructor creates invalid capability
*/
Capability() { }
/*
* Suppress warning about uninitialized 'ret' variable in 'call'
* functions on compilers that support the #praga. If this is
* not the case, the pragma can be masked by supplying the
* 'SUPPRESS_GCC_PRAGMA_WUNINITIALIZED' define to the compiler.
*/
#ifndef SUPPRESS_GCC_PRAGMA_WUNINITIALIZED
#pragma GCC diagnostic ignored "-Wuninitialized" call();
#endif
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call()
{
Meta::Empty e;
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(e, ret);
return ret;
}
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call(typename Arg<IF, 0>::Type v1)
{
Meta::Empty e;
typename IF::Client_args args(v1, e);
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(args, ret);
return ret;
}
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call(typename Arg<IF, 0>::Type v1, typename Arg<IF, 1>::Type v2)
{
Meta::Empty e;
typename IF::Client_args args(v1, v2, e);
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(args, ret);
return ret;
}
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call(typename Arg<IF, 0>::Type v1, typename Arg<IF, 1>::Type v2,
typename Arg<IF, 2>::Type v3)
{
Meta::Empty e;
typename IF::Client_args args(v1, v2, v3, e);
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(args, ret);
return ret;
}
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call(typename Arg<IF, 0>::Type v1, typename Arg<IF, 1>::Type v2,
typename Arg<IF, 2>::Type v3, typename Arg<IF, 3>::Type v4)
{
Meta::Empty e;
typename IF::Client_args args(v1, v2, v3, v4, e);
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(args, ret);
return ret;
}
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call(typename Arg<IF, 0>::Type v1, typename Arg<IF, 1>::Type v2,
typename Arg<IF, 2>::Type v3, typename Arg<IF, 3>::Type v4,
typename Arg<IF, 4>::Type v5)
{
Meta::Empty e;
typename IF::Client_args args(v1, v2, v3, v4, v5, e);
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(args, ret);
return ret;
}
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call(typename Arg<IF, 0>::Type v1, typename Arg<IF, 1>::Type v2,
typename Arg<IF, 2>::Type v3, typename Arg<IF, 3>::Type v4,
typename Arg<IF, 4>::Type v5, typename Arg<IF, 5>::Type v6)
{
Meta::Empty e;
typename IF::Client_args args(v1, v2, v3, v4, v5, v6, e);
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(args, ret);
return ret;
}
template <typename IF>
typename Trait::Call_return<typename IF::Ret_type>::Type
call(typename Arg<IF, 0>::Type v1, typename Arg<IF, 1>::Type v2,
typename Arg<IF, 2>::Type v3, typename Arg<IF, 3>::Type v4,
typename Arg<IF, 4>::Type v5, typename Arg<IF, 5>::Type v6,
typename Arg<IF, 6>::Type v7)
{
Meta::Empty e;
typename IF::Client_args args(v1, v2, v3, v4, v5, v6, v7, e);
typename Trait::Call_return<typename IF::Ret_type>::Type ret;
_call<IF>(args, ret);
return ret;
}
};
/**
* Convert an untyped capability to a typed capability
*/
template <typename RPC_INTERFACE>
Capability<RPC_INTERFACE>
reinterpret_cap_cast(Untyped_capability const &untyped_cap)
{
Capability<RPC_INTERFACE> typed_cap;
/*
* The object layout of untyped and typed capabilities is identical.
* Hence we can use memcpy to load the values of the supplied untyped
* capability into a typed capability.
*/
::Genode::memcpy(&typed_cap, &untyped_cap, sizeof(untyped_cap));
return typed_cap;
}
/**
* Convert capability type from an interface base type to an inherited
* interface type
*/
template <typename TO_RPC_INTERFACE, typename FROM_RPC_INTERFACE>
Capability<TO_RPC_INTERFACE>
static_cap_cast(Capability<FROM_RPC_INTERFACE> cap)
{
/* check interface compatibility */
(void)static_cast<TO_RPC_INTERFACE *>((FROM_RPC_INTERFACE *)0);
return reinterpret_cap_cast<TO_RPC_INTERFACE>(cap);
}
}
#endif /* _INCLUDE__BASE__CAPABILITY_H_ */

583
base/include/base/child.h Normal file
View File

@@ -0,0 +1,583 @@
/*
* \brief Child creation framework
* \author Norman Feske
* \date 2006-07-22
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__CHILD_H_
#define _INCLUDE__BASE__CHILD_H_
#include <base/rpc_server.h>
#include <base/heap.h>
#include <base/process.h>
#include <base/service.h>
#include <base/lock.h>
#include <util/arg_string.h>
#include <parent/parent.h>
namespace Genode {
/**
* Child policy interface
*
* A child-policy object is an argument to a 'Child'. It is responsible for
* taking policy decisions regarding the parent interface. Most importantly,
* it defines how session requests are resolved and how session arguments
* are passed to servers when creating sessions.
*/
struct Child_policy
{
virtual ~Child_policy() { }
/**
* Return process name of the child
*/
virtual const char *name() const = 0;
/**
* Determine service to provide a session request
*
* \return Service to be contacted for the new session, or
* 0 if session request could not be resolved
*/
virtual Service *resolve_session_request(const char *service_name,
const char *args)
{ return 0; }
/**
* Apply transformations to session arguments
*/
virtual void filter_session_args(const char *service,
char *args, size_t args_len) { }
/**
* Register a service provided by the child
*
* \param name service name
* \param root interface for creating sessions for the service
* \param alloc allocator to be used for child-specific
* meta-data allocations
* \return true if announcement succeeded, or false if
* child is not permitted to announce service
*/
virtual bool announce_service(const char *name,
Root_capability root,
Allocator *alloc)
{ return false; }
/**
* Unregister services that had been provided by the child
*/
virtual void unregister_services() { }
/**
* Exit child
*/
virtual void exit(int exit_value)
{
PDBG("child exited with exit value %d", exit_value);
}
};
/**
* Implementation of the parent interface that supports resource trading
*
* There are three possible cases of how a session can be provided to
* a child:
*
* # The service is implemented locally
* # The session was obtained by asking our parent
* # The session is provided by one of our children
*
* These types must be differentiated for the quota management when a child
* issues the closing of a session or a transfers quota via our parent
* interface.
*
* If we close a session to a local service, we transfer the session quota
* from our own account to the client.
*
* If we close a parent session, we receive the session quota on our own
* account and must transfer this amount to the session-closing child.
*
* If we close a session provided by a server child, we close the session
* at the server, transfer the session quota from the server's ram session
* to our account, and subsequently transfer the same amount from our
* account to the client.
*/
class Child : protected Rpc_object<Parent>
{
private:
/**
* Representation of an open session
*/
class Session : public Object_pool<Session>::Entry,
public List<Session>::Element
{
private:
enum { IDENT_LEN = 16 };
/**
* Session capability at the server
*/
Session_capability _cap;
/**
* Service interface that was used to create the session
*/
Service *_service;
/**
* Server implementing the session
*
* Even though we can normally determine the server of the
* session via '_service->server()', this does not apply
* when destructing a server. During destruction, we use
* the 'Server' pointer as opaque key for revoking active
* sessions of the server. So we keep a copy independent of
* the 'Service' object.
*/
Server *_server;
/**
* Total of quota associated with this session
*/
size_t _donated_ram_quota;
/**
* Name of session, used for debugging
*/
char _ident[IDENT_LEN];
public:
/**
* Constructor
*
* \param session session capability
* \param service service that implements the session
* \param ram_quota initial quota donation associated with
* the session
* \param ident optional session identifier, used for
* debugging
*/
Session(Session_capability session, Service *service,
size_t ram_quota, const char *ident = "<noname>")
:
Object_pool<Session>::Entry(session), _cap(session),
_service(service), _server(service->server()),
_donated_ram_quota(ram_quota) {
strncpy(_ident, ident, sizeof(_ident)); }
/**
* Default constructor creates invalid session
*/
Session() : _service(0), _donated_ram_quota(0) { }
/**
* Extend amount of ram attached to the session
*/
void upgrade_ram_quota(size_t ram_quota) {
_donated_ram_quota += ram_quota; }
/**
* Accessors
*/
Session_capability cap() const { return _cap; }
size_t donated_ram_quota() const { return _donated_ram_quota; }
bool valid() const { return _service != 0; }
Service *service() const { return _service; }
Server *server() const { return _server; }
const char *ident() const { return _ident; }
};
/**
* Guard for transferring quota donation
*
* This class is used to provide transactional semantics of quota
* transfers. Establishing a new session involves several steps, in
* particular subsequent quota transfers. If one intermediate step
* fails, we need to revert all quota transfers that already took
* place. When instantated at a local scope, a 'Transfer' object
* guards a quota transfer. If the scope is left without prior an
* explicit acknowledgement of the transfer (for example via an
* exception), the destructor the 'Transfer' object reverts the
* transfer in flight.
*/
class Transfer {
bool _ack;
size_t _quantum;
Ram_session_capability _from;
Ram_session_capability _to;
public:
/**
* Constructor
*
* \param quantim number of bytes to transfer
* \param from donator RAM session
* \param to receiver RAM session
*/
Transfer(size_t quantum,
Ram_session_capability from,
Ram_session_capability to)
: _ack(false), _quantum(quantum), _from(from), _to(to)
{
if (_from.valid() && _to.valid() &&
Ram_session_client(_from).transfer_quota(_to, quantum)) {
PWRN("not enough quota for a donation of %zd bytes", quantum);
throw Quota_exceeded();
}
}
/**
* Destructor
*
* The destructor will be called when leaving the scope of
* the 'session' function. If the scope is left because of
* an error (e.g., an exception), the donation will be
* reverted.
*/
~Transfer()
{
if (!_ack && _from.valid() && _to.valid())
Ram_session_client(_to).transfer_quota(_from, _quantum);
}
/**
* Acknowledge quota donation
*/
void acknowledge() { _ack = true; }
};
/* RAM session that contains the quota of the child */
Ram_session_capability _ram;
Ram_session_client _ram_session_client;
/* CPU session that contains the quota of the child */
Cpu_session_capability _cpu;
/* RM session representing the address space of the child */
Rm_session_capability _rm;
/* heap for child-specific allocations using the child's quota */
Heap _heap;
Rpc_entrypoint *_entrypoint;
Parent_capability _parent_cap;
Process _process;
/* sessions opened by the child */
Lock _lock; /* protect list manipulation */
Object_pool<Session> _session_pool;
List<Session> _session_list;
/* child policy */
Child_policy *_policy;
/**
* Session-argument buffer
*/
char _args[Parent::Session_args::MAX_SIZE];
/**
* Attach session information to a child
*
* \throw Ram_session::Quota_exceeded the child's heap partition cannot
* hold the session meta data
*/
void _add_session(const Session &s)
{
Lock::Guard lock_guard(_lock);
/*
* Store session information in a new child's meta data
* structure. The allocation from 'heap()' may throw a
* 'Ram_session::Quota_exceeded' exception.
*/
Session *session = 0;
try {
session = new (heap())
Session(s.cap(), s.service(),
s.donated_ram_quota(), s.ident()); }
catch (Allocator::Out_of_memory) {
throw Parent::Quota_exceeded(); }
/* these functions may also throw 'Ram_session::Quota_exceeded' */
_session_pool.insert(session);
_session_list.insert(session);
}
/**
* Close session and revert quota donation associated with it
*/
void _remove_session(Session *s)
{
Lock::Guard lock_guard(_lock);
/* forget about this session */
_session_pool.remove(s);
_session_list.remove(s);
/* return session quota to the ram session of the child */
if (env()->ram_session()->transfer_quota(_ram, s->donated_ram_quota()))
PERR("We ran out of our own quota");
destroy(heap(), s);
}
public:
/**
* Constructor
*
* \param elf_ds dataspace containing the binary
* \param ram RAM session with the child's quota
* \param cpu CPU session with the child's quota
* \param entrypoint server entrypoint to serve the parent interface
* \param policy child policy
*
* If assigning a separate entry point to each child, the host of
* multiple children is able to handle a blocking invocation of
* the parent interface of one child while still maintaining the
* service to other children, each having an independent entry
* point.
*/
Child(Dataspace_capability elf_ds,
Ram_session_capability ram,
Cpu_session_capability cpu,
Rm_session_capability rm,
Rpc_entrypoint *entrypoint,
Child_policy *policy)
:
_ram(ram), _ram_session_client(ram), _cpu(cpu), _rm(rm),
_heap(&_ram_session_client, env()->rm_session()),
_entrypoint(entrypoint),
_parent_cap(_entrypoint->manage(this)),
_process(elf_ds, ram, cpu, rm, _parent_cap, policy->name(), 0),
_policy(policy)
{ }
/**
* Destructor
*
* On destruction of a child, we close all sessions of the child to
* other services.
*/
virtual ~Child()
{
_entrypoint->dissolve(this);
_policy->unregister_services();
for (Session *s; (s = _session_pool.first()); )
close(s->cap());
}
/**
* Return heap that uses the child's quota
*/
Allocator *heap() { return &_heap; }
Ram_session_capability ram_session_cap() const { return _ram; }
Cpu_session_capability cpu_session_cap() const { return _cpu; }
Rm_session_capability rm_session_cap() const { return _rm; }
/**
* Discard all sessions to specified service
*
* When this function is called, we assume the server protection
* domain to be dead and all that all server quota was already
* transferred back to our own 'env()->ram_session()' account. Note
* that the specified server object may not exist anymore. We do
* not de-reference the server argument in here!
*/
void revoke_server(const Server *server)
{
while (1) {
/* search session belonging to the specified server */
Session *s = _session_list.first();
for ( ; s && (s->server() != server); s = s->next());
/* if no matching session exists, we are done */
if (!s) return;
_remove_session(s);
}
}
/**********************
** Parent interface **
**********************/
void announce(Service_name const &name, Root_capability root)
{
if (!name.is_valid_string()) return;
_policy->announce_service(name.string(), root, heap());
}
Session_capability session(Service_name const &name, Session_args const &args)
{
if (!name.is_valid_string() || !args.is_valid_string()) throw Unavailable();
/* return sessions that we created for the child */
if (!strcmp("Env::ram_session", name.string())) return _ram;
if (!strcmp("Env::cpu_session", name.string())) return _cpu;
if (!strcmp("Env::rm_session", name.string())) return _rm;
if (!strcmp("Env::pd_session", name.string())) return _process.pd_session_cap();
/* filter session arguments according to the child policy */
strncpy(_args, args.string(), sizeof(_args));
_policy->filter_session_args(name.string(), _args, sizeof(_args));
/* transfer the quota donation from the child's account to ourself */
size_t ram_quota = Arg_string::find_arg(_args, "ram_quota").long_value(0);
Transfer donation_from_child(ram_quota, _ram, env()->ram_session_cap());
Service *service = _policy->resolve_session_request(name.string(), _args);
/* raise an error if no matching service provider could be found */
if (!service)
throw Service_denied();
/* transfer session quota from ourself to the service provider */
Transfer donation_to_service(ram_quota, env()->ram_session_cap(),
service->ram_session_cap());
/* create session */
Session_capability cap;
try { cap = service->session(_args); }
catch (Service::Invalid_args) { throw Service_denied(); }
catch (Service::Unavailable) { throw Service_denied(); }
catch (Service::Quota_exceeded) { throw Quota_exceeded(); }
/* register session */
try { _add_session(Session(cap, service, ram_quota, name.string())); }
catch (Ram_session::Quota_exceeded) { throw Quota_exceeded(); }
/* finish transaction */
donation_from_child.acknowledge();
donation_to_service.acknowledge();
return cap;
}
void upgrade(Session_capability to_session, Upgrade_args const &args)
{
Session *s = _session_pool.obj_by_cap(to_session);
if (!s) {
PWRN("no session structure found - nothing to be done\n");
return;
}
if (!args.is_valid_string()) {
PWRN("no valid session-upgrade arguments");
return;
}
size_t ram_quota = Arg_string::find_arg(args.string(), "ram_quota").ulong_value(0);
/* transfer quota from client to ourself */
Transfer donation_from_child(ram_quota, _ram,
env()->ram_session_cap());
/* transfer session quota from ourself to the service provider */
Transfer donation_to_service(ram_quota, env()->ram_session_cap(),
s->service()->ram_session_cap());
try { s->service()->upgrade(to_session, args.string()); }
catch (Service::Quota_exceeded) { throw Quota_exceeded(); }
/* remember new amount attached to the session */
s->upgrade_ram_quota(ram_quota);
/* finish transaction */
donation_from_child.acknowledge();
donation_to_service.acknowledge();
}
void close(Session_capability session_cap)
{
/* refuse to close the child's initial sessions */
if (session_cap.local_name() == _ram.local_name()
|| session_cap.local_name() == _cpu.local_name()
|| session_cap.local_name() == _rm.local_name()
|| session_cap.local_name() == _process.pd_session_cap().local_name())
return;
Session *s = _session_pool.obj_by_cap(session_cap);
if (!s) {
PWRN("no session structure found");
return;
}
/*
* There is a chance that the server is not responding to
* the 'close' call, making us block infinitely. However,
* by using core's cancel-blocking mechanism, we can cancel
* the 'close' call by another (watchdog) thread that
* invokes 'cancel_blocking' at our thread after a timeout.
* The unblocking is reflected at the API level as an
* 'Blocking_canceled' exception. We catch this exception
* to proceed with normal operation after being unblocked.
*/
try { s->service()->close(s->cap()); }
catch (Blocking_canceled) {
PDBG("Got Blocking_canceled exception during %s->close call\n",
s->ident()); }
/*
* If the session was provided by a child of us,
* 'server()->ram_session_cap()' returns the RAM session of the
* corresponding child. Since the session to the server is
* closed now, we expect that the server released all donated
* resources and we can decrease the servers' quota.
*
* If this goes wrong, the server is misbehaving.
*/
if (s->service()->ram_session_cap().valid()) {
Ram_session_client server_ram(s->service()->ram_session_cap());
if (server_ram.transfer_quota(env()->ram_session_cap(),
s->donated_ram_quota())) {
PERR("Misbehaving server '%s'!", s->service()->name());
}
}
_remove_session(s);
}
void exit(int exit_value)
{
/*
* This function receives the hint from the child that now, its
* a good time to kill it. An inherited child class could use
* this hint to schedule the destruction of the child object.
*
* Note that the child object must not be destructed from by
* this function because it is executed by the thread contained
* in the child object.
*/
return _policy->exit(exit_value);
}
};
}
#endif /* _INCLUDE__BASE__CHILD_H_ */

View File

@@ -0,0 +1,98 @@
/*
* \brief Connection to a service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__CONNECTION_H_
#define _INCLUDE__BASE__CONNECTION_H_
#include <base/env.h>
#include <base/capability.h>
namespace Genode {
/**
* Representation of an open connection to a service
*/
template <typename SESSION_TYPE>
class Connection
{
public:
enum On_destruction { CLOSE = false, KEEP_OPEN = true };
private:
/*
* Because the argument string is used with the parent interface,
* the message-buffer size of the parent-interface provides a
* realistic upper bound for dimensioning the format- string
* buffer.
*/
enum { FORMAT_STRING_SIZE = Parent::Session_args::MAX_SIZE };
Capability<SESSION_TYPE> _cap;
On_destruction _on_destruction;
public:
/**
* Constructor
*
* \param cap session capability
* \param od session policy applied when destructing the connection
*/
Connection(Capability<SESSION_TYPE> cap, On_destruction od = CLOSE):
_cap(cap), _on_destruction(od) { }
/**
* Destructor
*/
~Connection()
{
if (_on_destruction == CLOSE)
env()->parent()->close(_cap);
}
/**
* Return session capability
*/
Capability<SESSION_TYPE> cap() const { return _cap; }
/**
* Define session policy
*/
void on_destruction(On_destruction od) { _on_destruction = od; }
/**
* Shortcut for env()->parent()->session() function
*/
Capability<SESSION_TYPE> session(const char *format_args, ...)
{
char buf[FORMAT_STRING_SIZE];
/* process format string */
va_list list;
va_start(list, format_args);
String_console sc(buf, FORMAT_STRING_SIZE);
sc.vprintf(format_args, list);
va_end(list);
/* call parent interface with the resulting argument buffer */
return env()->parent()->session<SESSION_TYPE>(buf);
}
};
}
#endif /* _INCLUDE__BASE__CONNECTION_H_ */

View File

@@ -0,0 +1,60 @@
/*
* \brief Simple console for debug output
* \author Norman Feske
* \date 2006-04-07
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__CONSOLE_H_
#define _INCLUDE__BASE__CONSOLE_H_
#include <stdarg.h>
namespace Genode {
class Console
{
public:
virtual ~Console() {}
/**
* Print format string
*/
void printf(const char *format, ...) __attribute__((format(printf, 2, 3)));
void vprintf(const char *format, va_list) __attribute__((format(printf, 2, 0)));
protected:
/**
* Backend function for the output of one character
*/
virtual void _out_char(char c) = 0;
/**
* Backend function for the output of a null-terminated string
*
* The default implementation uses _out_char. This function may
* be overridden by the backend for improving efficiency.
*
* This function is virtual to enable the use an optimized
* string-output functions on some target platforms, e.g.
* a kernel debugger that offers a string-output syscall. The
* default implementation calls '_out_char' for each character.
*/
virtual void _out_string(const char *str);
private:
template <typename T> void _out_unsigned(T value, unsigned base = 10, int pad = 0);
template <typename T> void _out_signed(T value, unsigned base = 10);
};
}
#endif /* _INCLUDE__BASE__CONSOLE_H_ */

View File

@@ -0,0 +1,35 @@
/*
* \brief CPU state
* \author Christian Prochaska
* \date 2011-04-15
*
* This file contains the generic part of the CPU state.
*/
/*
* Copyright (C) 2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__CPU_STATE_H_
#define _INCLUDE__BASE__CPU_STATE_H_
#include <base/stdint.h>
namespace Genode {
struct Cpu_state
{
addr_t ip; /* instruction pointer */
addr_t sp; /* stack pointer */
/**
* Constructor
*/
Cpu_state(): ip(0), sp(0) { }
};
}
#endif /* _INCLUDE__BASE__CPU_STATE_H_ */

45
base/include/base/crt0.h Normal file
View File

@@ -0,0 +1,45 @@
/*
* \brief Startup code and program image specifica
* \author Christian Helmuth
* \date 2006-05-16
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__CRT0_H_
#define _INCLUDE__BASE__CRT0_H_
/************************************
** Program image exported symbols **
************************************/
extern unsigned _prog_img_beg; /* begin of program image (link address) */
extern unsigned _prog_img_end; /* end of program image */
extern void (*_ctors_start)(); /* begin of constructor table */
extern void (*_ctors_end)(); /* end of constructor table */
extern void (*_dtors_start)(); /* begin of destructor table */
extern void (*_dtors_end)(); /* end of destructor table */
extern unsigned _start; /* program entry point */
extern unsigned _stack_low; /* lower bound of intial stack */
extern unsigned _stack_high; /* upper bound of intial stack */
/***************************************************
** Parameters for parent capability construction **
***************************************************/
/*
* The protection domain creator initializes the information about
* the parent capability prior the execution of the main thread.
*/
extern unsigned long _parent_cap;
#endif /* _INCLUDE__BASE__CRT0_H_ */

157
base/include/base/elf.h Normal file
View File

@@ -0,0 +1,157 @@
/*
* \brief ELF binary utility
* \author Christian Helmuth
* \date 2006-05-04
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__ELF_H_
#define _INCLUDE__BASE__ELF_H_
#include <base/stdint.h>
namespace Genode {
class Elf_segment;
class Elf_binary
{
public:
/**
* Default constructor creates invalid object
*/
Elf_binary() : _valid(false) { }
/**
* Constructor
*
* The object is only useful if valid() returns true.
*/
explicit Elf_binary(addr_t start);
/* special types */
struct Flags {
unsigned r:1;
unsigned w:1;
unsigned x:1;
unsigned skip:1;
};
/**
* Read information about program segments
*
* \return properties of the specified program segment
*/
Elf_segment get_segment(unsigned num);
/**
* Check validity
*/
bool valid() { return _valid; }
/**
* Check for dynamic elf
*/
bool is_dynamically_linked() { return (_dynamic && _interp); }
/************************
** Accessor functions **
************************/
addr_t entry() { return valid() ? _entry : 0; }
private:
/* validity indicator indicates if the loaded ELF is valid and supported */
bool _valid;
/* dynamically linked */
bool _dynamic;
/* dynamic linker name matches 'genode' */
bool _interp;
/* ELF start pointer in memory */
addr_t _start;
/* ELF entry point */
addr_t _entry;
/* program segments */
addr_t _ph_table;
size_t _phentsize;
unsigned _phnum;
/************
** Helper **
************/
/**
* Check ELF header compatibility
*/
int _ehdr_check_compat();
/**
* Check program header compatibility
*/
int _ph_table_check_compat();
/**
* Check for dynamic program segments
*/
bool _dynamic_check_compat(unsigned type);
};
class Elf_segment
{
public:
/**
* Standard constructor creates invalid object
*/
Elf_segment() : _valid(false) { }
Elf_segment(const Elf_binary *elf, void *start, size_t file_offset,
size_t file_size, size_t mem_size, Elf_binary::Flags flags)
: _elf(elf), _start((unsigned char *)start), _file_offset(file_offset),
_file_size(file_size), _mem_size(mem_size), _flags(flags)
{
_valid = elf ? true : false;
}
const Elf_binary * elf() { return _elf; }
void * start() { return (void *)_start; }
size_t file_offset() { return _file_offset; }
size_t file_size() { return _file_size; }
size_t mem_size() { return _mem_size; }
Elf_binary::Flags flags() { return _flags; }
/**
* Check validity
*/
bool valid() { return _valid; }
private:
const Elf_binary *_elf;
bool _valid; /* validity indicator */
unsigned char *_start;
size_t _file_offset;
size_t _file_size;
size_t _mem_size;
Elf_binary::Flags _flags;
};
}
#endif /* _INCLUDE__BASE__ELF_H_ */

88
base/include/base/env.h Normal file
View File

@@ -0,0 +1,88 @@
/*
* \brief Environment of a process
* \author Norman Feske
* \date 2006-07-01
*
* The environment of a Genode process is defined by its parent and initialized
* on startup.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__ENV_H_
#define _INCLUDE__BASE__ENV_H_
#include <parent/capability.h>
#include <parent/parent.h>
#include <rm_session/rm_session.h>
#include <ram_session/ram_session.h>
#include <cpu_session/cpu_session.h>
#include <pd_session/pd_session.h>
#include <base/allocator.h>
#include <base/snprintf.h>
#include <base/lock.h>
namespace Genode {
class Env
{
public:
virtual ~Env() { }
/**
* Communication channel to our parent
*/
virtual Parent *parent() = 0;
/**
* RAM session for the program
*
* The RAM Session represents a quota of memory that is
* available to the program. Quota can be used to allocate
* RAM-Dataspaces.
*/
virtual Ram_session *ram_session() = 0;
virtual Ram_session_capability ram_session_cap() = 0;
/**
* CPU session for the program
*
* This session is used to create threads.
*/
virtual Cpu_session *cpu_session() = 0;
/**
* Region manager session of the program
*/
virtual Rm_session *rm_session() = 0;
/**
* Pd session of the program
*/
virtual Pd_session *pd_session() = 0;
/**
* Heap backed by the ram_session of the
* environment.
*/
virtual Allocator *heap() = 0;
};
extern Env *env();
/**
* Return parent capability
*
* Platforms have to implement this function for environment
* initialization.
*/
Parent_capability parent_cap();
}
#endif /* _INCLUDE__BASE__ENV_H_ */

22
base/include/base/errno.h Normal file
View File

@@ -0,0 +1,22 @@
/*
* \brief Genode error codes
* \author Norman Feske
* \date 2006-04-28
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__ERRNO_H_
#define _INCLUDE__BASE__ERRNO_H_
namespace Genode {
enum { ERR_INVALID_OBJECT = -70000, };
}
#endif /* _INCLUDE__BASE__ERRNO_H_ */

View File

@@ -0,0 +1,19 @@
/*
* \brief Exception base class
* \author Norman Feske
* \date 2008-03-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__EXCEPTION_H_
#define _INCLUDE__BASE__EXCEPTION_H_
namespace Genode { class Exception { }; }
#endif /* _INCLUDE__BASE__EXCEPTION_H_ */

182
base/include/base/heap.h Normal file
View File

@@ -0,0 +1,182 @@
/*
* \brief Heap partition
* \author Norman Feske
* \date 2006-05-15
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__HEAP_H_
#define _INCLUDE__BASE__HEAP_H_
#include <util/list.h>
#include <ram_session/ram_session.h>
#include <rm_session/rm_session.h>
#include <base/allocator_avl.h>
#include <base/lock.h>
namespace Genode {
/**
* Heap that uses dataspaces as backing store
*
* The heap class provides an allocator that uses a list of dataspaces of a ram
* session as backing store. One dataspace may be used for holding multiple blocks.
*/
class Heap : public Allocator
{
private:
enum {
MIN_CHUNK_SIZE = 4*1024, /* in machine words */
MAX_CHUNK_SIZE = 1024*1024
};
class Dataspace : public List<Dataspace>::Element
{
public:
Ram_dataspace_capability cap;
void *local_addr;
};
class Dataspace_pool : public List<Dataspace>
{
private:
Ram_session *_ram_session; /* ram session for backing store */
Rm_session *_rm_session; /* region manager */
public:
/**
* Constructor
*/
Dataspace_pool(Ram_session *ram_session, Rm_session *rm_session):
_ram_session(ram_session), _rm_session(rm_session) { }
/**
* Destructor
*/
~Dataspace_pool();
/**
* Expand dataspace by specified size
*
* \param size number of bytes to add to the dataspace pool
* \param md_alloc allocator to expand. This allocator is also
* used for meta data allocation (only after
* being successfully expanded).
* \throw Rm_session::Invalid_dataspace,
* Rm_session::Region_conflict
* \return 0 on success or negative error code
*/
int expand(size_t size, Range_allocator *alloc);
};
/*
* NOTE: The order of the member variables is important for
* the calling order of the destructors!
*/
Lock _lock;
Dataspace_pool _ds_pool; /* list of dataspaces */
Allocator_avl _alloc; /* local allocator */
size_t _quota_limit;
size_t _quota_used;
size_t _chunk_size;
/**
* Try to allocate block at our local allocator
*
* \return true on success
*
* This function is a utility used by 'alloc' to avoid
* code duplication.
*/
bool _try_local_alloc(size_t size, void **out_addr);
public:
enum { UNLIMITED = ~0 };
Heap(Ram_session *ram_session,
Rm_session *rm_session,
size_t quota_limit = UNLIMITED,
void *static_addr = 0,
size_t static_size = 0)
:
_ds_pool(ram_session, rm_session),
_alloc(0),
_quota_limit(quota_limit), _quota_used(0),
_chunk_size(MIN_CHUNK_SIZE)
{
if (static_addr)
_alloc.add_range((addr_t)static_addr, static_size);
}
/**
* Reconfigure quota limit
*
* \return negative error code if new quota limit is higher than
* currently used quota.
*/
int quota_limit(size_t new_quota_limit);
/*************************
** Allocator interface **
*************************/
bool alloc(size_t, void **);
void free(void *, size_t);
size_t consumed() { return _quota_used; }
size_t overhead(size_t size) { return _alloc.overhead(size); }
};
/**
* Heap that allocates each block at a separate dataspace
*/
class Sliced_heap : public Allocator
{
private:
class Block;
Ram_session *_ram_session; /* ram session for backing store */
Rm_session *_rm_session; /* region manager */
size_t _consumed; /* number of allocated bytes */
List<Block> _block_list; /* list of allocated blocks */
Lock _lock; /* serialize allocations */
public:
/**
* Constructor
*/
Sliced_heap(Ram_session *ram_session, Rm_session *rm_session);
/**
* Destructor
*/
~Sliced_heap();
/*************************
** Allocator interface **
*************************/
bool alloc(size_t, void **);
void free(void *, size_t);
size_t consumed() { return _consumed; }
size_t overhead(size_t size);
};
}
#endif /* _INCLUDE__BASE__HEAP_H_ */

41
base/include/base/ipc.h Normal file
View File

@@ -0,0 +1,41 @@
/*
* \brief Generic IPC infrastructure
* \author Norman Feske
* \date 2009-10-02
*
* This file is used for platforms that only use the generic IPC API. A platform
* may extend the generic API with platform-specific marshalling operators by
* providing a custom version of 'ipc.h' in its 'base-<platform>' repository.
*/
/*
* Copyright (C) 2009-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__IPC_H_
#define _INCLUDE__BASE__IPC_H_
#include <base/ipc_generic.h>
/**
* Marshalling of capabilities as plain data representation
*/
inline void
Genode::Ipc_ostream::_marshal_capability(Genode::Native_capability const &cap)
{
_write_to_buf(cap);
}
/**
* Unmarshalling of capabilities as plain data representation
*/
inline void
Genode::Ipc_istream::_unmarshal_capability(Genode::Native_capability &cap)
{
_read_from_buf(cap);
}
#endif /* _INCLUDE__BASE__IPC_H_ */

View File

@@ -0,0 +1,624 @@
/*
* \brief Generic IPC infrastructure
* \author Norman Feske
* \date 2006-06-12
*
* Most of the marshalling and unmarshallung code is generic for IPC
* implementations among different platforms. In addition to the generic
* marshalling items, platform-specific marshalling items can be realized
* via specialized stream operators defined in the platform-specific
* 'base/ipc.h'. Hence, this header file is never to be included directly.
* It should only be included by a platform-specific 'base/ipc.h' file.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__IPC_GENERIC_H_
#define _INCLUDE__BASE__IPC_GENERIC_H_
#include <util/misc_math.h>
#include <util/string.h>
#include <base/errno.h>
#include <base/exception.h>
#include <base/capability.h>
#include <base/ipc_msgbuf.h>
#include <base/rpc_args.h>
#include <base/printf.h>
namespace Genode {
enum Ipc_ostream_send { IPC_SEND };
enum Ipc_istream_wait { IPC_WAIT };
enum Ipc_client_call { IPC_CALL };
enum Ipc_server_reply { IPC_REPLY };
enum Ipc_server_reply_wait { IPC_REPLY_WAIT };
/*********************
** Exception types **
*********************/
class Ipc_error : public Exception { };
/**
* Marshal arguments into send message buffer
*/
class Ipc_marshaller
{
protected:
char *_sndbuf;
size_t _sndbuf_size;
unsigned _write_offset;
protected:
/**
* Write value to send buffer
*/
template <typename T>
void _write_to_buf(T const &value)
{
/* check buffer range */
if (_write_offset + sizeof(T) >= _sndbuf_size) return;
/* write integer to buffer */
*reinterpret_cast<T *>(&_sndbuf[_write_offset]) = value;
/* increment write pointer to next dword-aligned value */
_write_offset += align_natural(sizeof(T));
}
/**
* Write bytes to send buffer
*/
void _write_to_buf(char const *src_addr, unsigned num_bytes)
{
/* check buffer range */
if (_write_offset + num_bytes >= _sndbuf_size) return;
/* copy buffer */
memcpy(&_sndbuf[_write_offset], src_addr, num_bytes);
/* increment write pointer to next dword-aligned value */
_write_offset += align_natural(num_bytes);
}
/**
* Write 'Rpc_in_buffer' to send buffer
*/
void _write_buffer_to_buf(Rpc_in_buffer_base const &b)
{
size_t size = b.size();
_write_to_buf(size);
_write_to_buf(b.base(), size);
}
/**
* Write array to send buffer
*/
template <typename T, size_t N>
void _write_to_buf(T const (&array)[N])
{
/* check buffer range */
if (_write_offset + sizeof(array) >= _sndbuf_size)
PERR("send buffer overrun");
memcpy(&_sndbuf[_write_offset], array, sizeof(array));
_write_offset += align_natural(sizeof(array));
}
public:
Ipc_marshaller(char *sndbuf, size_t sndbuf_size)
: _sndbuf(sndbuf), _sndbuf_size(sndbuf_size), _write_offset(0) { }
};
/**
* Unmarshal arguments from receive buffer
*/
class Ipc_unmarshaller
{
protected:
char *_rcvbuf;
size_t _rcvbuf_size;
unsigned _read_offset;
protected:
/**
* Read value of type T from buffer
*/
template <typename T>
void _read_from_buf(T &value)
{
/* check receive buffer range */
if (_read_offset + sizeof(T) >= _rcvbuf_size) return;
/* return value from receive buffer */
value = *reinterpret_cast<T *>(&_rcvbuf[_read_offset]);
/* increment read pointer to next dword-aligned value */
_read_offset += align_natural(sizeof(T));
}
/**
* Read 'Rpc_in_buffer' from receive buffer
*/
void _read_bytebuf_from_buf(Rpc_in_buffer_base &b)
{
size_t size = 0;
_read_from_buf(size);
b = Rpc_in_buffer_base(0, 0);
/*
* Check receive buffer range
*
* Note: The addr of the Rpc_in_buffer_base is a null pointer when this
* condition triggers.
*/
if (_read_offset + size >= _rcvbuf_size) {
PERR("message buffer overrun");
return;
}
b = Rpc_in_buffer_base(&_rcvbuf[_read_offset], size);
_read_offset += align_natural(size);
}
/**
* Read array from receive buffer
*/
template <typename T, size_t N>
void _read_from_buf(T (&array)[N])
{
if (_read_offset + sizeof(array) >= _rcvbuf_size) {
PERR("receive buffer overrun");
return;
}
memcpy(array, &_rcvbuf[_read_offset], sizeof(array));
_read_offset += align_natural(sizeof(array));
}
/**
* Read long value at specified byte index of receive buffer
*/
long _long_at_idx(int idx) { return *(long *)(&_rcvbuf[idx]); }
public:
Ipc_unmarshaller(char *rcvbuf, size_t rcvbuf_size)
: _rcvbuf(rcvbuf), _rcvbuf_size(rcvbuf_size), _read_offset(0) { }
};
/**
* Stream for sending information via a capability to an endpoint
*/
class Ipc_ostream : public Ipc_marshaller
{
protected:
Msgbuf_base *_snd_msg; /* send message buffer */
Native_capability _dst;
/**
* Reset marshaller and write badge at the beginning of the message
*/
void _prepare_next_send();
/**
* Send message in _snd_msg to _dst
*/
void _send();
/**
* Insert capability to message buffer
*/
void _marshal_capability(Native_capability const &cap);
public:
/**
* Constructor
*/
Ipc_ostream(Native_capability dst, Msgbuf_base *snd_msg);
/**
* Return true if Ipc_ostream is ready for send
*/
bool ready_for_send() const { return _dst.valid(); }
/**
* Insert value into send buffer
*/
template <typename T>
Ipc_ostream &operator << (T const &value)
{
_write_to_buf(value);
return *this;
}
/**
* Insert byte buffer to send buffer
*/
Ipc_ostream &operator << (Rpc_in_buffer_base const &b)
{
_write_buffer_to_buf(b);
return *this;
}
/**
* Insert capability to send buffer
*/
Ipc_ostream &operator << (Native_capability const &cap)
{
_marshal_capability(cap);
return *this;
}
/**
* Insert typed capability to send buffer
*/
template <typename IT>
Ipc_ostream &operator << (Capability<IT> const &typed_cap)
{
_marshal_capability(typed_cap);
return *this;
}
/**
* Issue the sending of the message buffer
*/
Ipc_ostream &operator << (Ipc_ostream_send)
{
_send();
return *this;
}
/**
* Return current 'IPC_SEND' destination
*
* This function is typically needed by a server than sends replies
* in a different order as the incoming calls.
*/
Native_capability dst() const { return _dst; }
/**
* Set destination for the next 'IPC_SEND'
*/
void dst(Native_capability const &dst) { _dst = dst; }
};
/**
* Stream for receiving information
*/
class Ipc_istream : public Ipc_unmarshaller, public Native_capability
{
private:
/**
* Prevent 'Ipc_istream' objects from being copied
*
* Copying an 'Ipc_istream' object would result in a duplicated
* (and possibly inconsistent) connection state both the original
* and the copied object.
*/
Ipc_istream(const Ipc_istream &);
protected:
Msgbuf_base *_rcv_msg;
Native_connection_state _rcv_cs;
/**
* Obtain capability from message buffer
*/
void _unmarshal_capability(Native_capability &cap);
protected:
/**
* Reset unmarshaller
*/
void _prepare_next_receive();
/**
* Wait for incoming message to be received in _rcv_msg
*/
void _wait();
public:
explicit Ipc_istream(Msgbuf_base *rcv_msg);
~Ipc_istream();
/**
* Read badge that was supplied with the message
*/
long badge() { return _long_at_idx(0); }
/**
* Block for an incoming message filling the receive buffer
*/
Ipc_istream &operator >> (Ipc_istream_wait)
{
_wait();
return *this;
}
/**
* Read values from receive buffer
*/
template <typename T>
Ipc_istream &operator >> (T &value)
{
_read_from_buf(value);
return *this;
}
/**
* Read byte buffer from receive buffer
*/
Ipc_istream &operator >> (Rpc_in_buffer_base &b)
{
_read_bytebuf_from_buf(b);
return *this;
}
/**
* Read byte buffer from receive buffer
*/
template <size_t MAX_BUFFER_SIZE>
Ipc_istream &operator >> (Rpc_in_buffer<MAX_BUFFER_SIZE> &b)
{
_read_bytebuf_from_buf(b);
return *this;
}
/**
* Read capability from receive buffer
*/
Ipc_istream &operator >> (Native_capability &cap)
{
_unmarshal_capability(cap);
return *this;
}
/**
* Read typed capability from receive buffer
*/
template <typename IT>
Ipc_istream &operator >> (Capability<IT> &typed_cap)
{
_unmarshal_capability(typed_cap);
return *this;
}
};
class Ipc_client: public Ipc_istream, public Ipc_ostream
{
protected:
int _result; /* result of most recent call */
void _prepare_next_call();
/**
* Send RPC message and wait for result
*/
void _call();
public:
/**
* Constructor
*/
Ipc_client(Native_capability const &srv, Msgbuf_base *snd_msg,
Msgbuf_base *rcv_msg);
/**
* Operator that issues an IPC call
*
* \throw Ipc_error
* \throw Blocking_canceled
*/
Ipc_client &operator << (Ipc_client_call)
{
_call();
_read_from_buf(_result);
if (_result == ERR_INVALID_OBJECT) {
PERR("tried to call an invalid object");
throw Ipc_error();
}
return *this;
}
template <typename T>
Ipc_client &operator << (T const &value)
{
_write_to_buf(value);
return *this;
}
Ipc_client &operator << (Rpc_in_buffer_base const &b)
{
_write_buffer_to_buf(b);
return *this;
}
template <size_t MAX_BUFFER_SIZE>
Ipc_client &operator << (Rpc_in_buffer<MAX_BUFFER_SIZE> const &b)
{
_write_buffer_to_buf(b);
return *this;
}
Ipc_client &operator << (Native_capability const &cap)
{
_marshal_capability(cap);
return *this;
}
template <typename IT>
Ipc_client &operator << (Capability<IT> const &typed_cap)
{
_marshal_capability(typed_cap);
return *this;
}
Ipc_client &operator >> (Native_capability &cap)
{
_unmarshal_capability(cap);
return *this;
}
template <typename IT>
Ipc_client &operator >> (Capability<IT> &typed_cap)
{
_unmarshal_capability(typed_cap);
return *this;
}
template <typename T>
Ipc_client &operator >> (T &value)
{
_read_from_buf(value);
return *this;
}
Ipc_client &operator >> (Rpc_in_buffer_base &b)
{
_read_bytebuf_from_buf(b);
return *this;
}
int result() const { return _result; }
};
class Ipc_server : public Ipc_istream, public Ipc_ostream
{
protected:
bool _reply_needed; /* false for the first reply_wait */
void _prepare_next_reply_wait();
/**
* Wait for incoming call
*
* In constrast to 'Ipc_istream::_wait()', this function stores the
* next reply destination from into 'dst' of the 'Ipc_ostream'.
*/
void _wait();
/**
* Send reply to destination
*
* In contrast to 'Ipc_ostream::_send()', this function prepares
* the 'Ipc_server' to send another subsequent reply without the
* calling '_wait()' in between. This is needed when a server
* answers calls out of order.
*/
void _reply();
/**
* Send result of previous RPC request and wait for new one
*/
void _reply_wait();
public:
/**
* Constructor
*/
Ipc_server(Msgbuf_base *snd_msg, Msgbuf_base *rcv_msg);
/**
* Set return value of server call
*/
void ret(int retval)
{
*reinterpret_cast<int *>(&_sndbuf[sizeof(umword_t)]) = retval;
}
/**
* Set reply destination
*/
void dst(Native_capability const &reply_dst)
{
Ipc_ostream::dst(reply_dst);
_reply_needed = reply_dst.valid();
}
using Ipc_ostream::dst;
/**
* Block for an incoming message filling the receive buffer
*/
Ipc_server &operator >> (Ipc_istream_wait)
{
_wait();
return *this;
}
/**
* Issue the sending of the message buffer
*/
Ipc_server &operator << (Ipc_server_reply)
{
_reply();
return *this;
}
/**
* Reply current request and wait for a new one
*/
Ipc_server &operator >> (Ipc_server_reply_wait)
{
_reply_wait();
return *this;
}
/**
* Write value to send buffer
*
* This operator is only used by test programs
*/
template <typename T>
Ipc_server &operator << (T const &value)
{
_write_to_buf(value);
return *this;
}
/**
* Read value from receive buffer
*
* This operator should only be used by the server framework for
* reading the function offset. The server-side processing of the
* payload is done using 'Ipc_istream' and 'Ipc_ostream'.
*/
template <typename T>
Ipc_server &operator >> (T &value)
{
_read_from_buf(value);
return *this;
}
};
}
#endif /* _INCLUDE__BASE__IPC_GENERIC_H_ */

47
base/include/base/lock.h Normal file
View File

@@ -0,0 +1,47 @@
/*
* \brief Locking primitives
* \author Norman Feske
* \date 2006-07-26
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__LOCK_H_
#define _INCLUDE__BASE__LOCK_H_
#include <base/cancelable_lock.h>
namespace Genode {
class Lock : public Cancelable_lock
{
public:
/**
* Constructor
*/
explicit Lock(State initial = UNLOCKED)
: Cancelable_lock(initial) { }
void lock()
{
while (1)
try {
Cancelable_lock::lock();
return;
} catch (Blocking_canceled) { }
}
/**
* Lock guard
*/
typedef Lock_guard<Lock> Guard;
};
}
#endif /* _INCLUDE__BASE__LOCK_H_ */

View File

@@ -0,0 +1,46 @@
/*
* \brief Lock guard
* \author Norman Feske
* \date 2006-07-26
*
* A lock guard is instantiated as a local variable.
* When a lock guard is constructed, it acquires the lock that
* is specified as constructor argument. When the control
* flow leaves the scope of the lock guard variable via
* a return statement or an exception, the lock guard's
* destructor gets called, freeing the lock.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__LOCK_GUARD_H_
#define _INCLUDE__BASE__LOCK_GUARD_H_
namespace Genode {
/**
* Lock guard template
*
* \param LT lock type
*/
template <typename LT>
class Lock_guard
{
private:
LT &_lock;
public:
explicit Lock_guard(LT &lock) : _lock(lock) { _lock.lock(); }
~Lock_guard() { _lock.unlock(); }
};
}
#endif /* _INCLUDE__BASE__LOCK_GUARD_H_ */

View File

@@ -0,0 +1,130 @@
/*
* \brief Object pool - map ids to objects
* \author Norman Feske
* \date 2006-06-26
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__OBJECT_POOL_H_
#define _INCLUDE__BASE__OBJECT_POOL_H_
#include <util/avl_tree.h>
#include <base/capability.h>
#include <base/lock.h>
namespace Genode {
/**
* Map object ids to local objects
*
* \param OBJ_TYPE object type (must be inherited from Object_pool::Entry)
*
* The local names of a capabilities are used to differentiate multiple server
* objects managed by one and the same object pool.
*/
template <typename OBJ_TYPE>
class Object_pool
{
public:
class Entry : public Avl_node<Entry>
{
private:
Untyped_capability _cap;
inline long _obj_id() { return _cap.local_name(); }
friend class Object_pool;
friend class Avl_tree<Entry>;
public:
enum { OBJ_ID_INVALID = 0 };
/**
* Constructors
*/
Entry() { }
Entry(Untyped_capability cap) : _cap(cap) { }
/**
* Avl_node interface
*/
bool higher(Entry *e) { return e->_obj_id() > _obj_id(); }
void recompute() { } /* for gcc-3.4 compatibility */
/**
* Support for object pool
*/
Entry *find_by_obj_id(long obj_id)
{
if (obj_id == _obj_id()) return this;
Entry *obj = child(obj_id > _obj_id());
return obj ? obj->find_by_obj_id(obj_id) : 0;
}
/**
* Assign capability to object pool entry
*/
void cap(Untyped_capability c) { _cap = c; }
Untyped_capability const cap() const { return _cap; }
};
private:
Avl_tree<Entry> _tree;
Lock _lock;
public:
void insert(OBJ_TYPE *obj)
{
Lock::Guard lock_guard(_lock);
_tree.insert(obj);
}
void remove(OBJ_TYPE *obj)
{
Lock::Guard lock_guard(_lock);
_tree.remove(obj);
}
/**
* Lookup object
*/
OBJ_TYPE *obj_by_id(long obj_id)
{
Lock::Guard lock_guard(_lock);
Entry *obj = _tree.first();
return (OBJ_TYPE *)(obj ? obj->find_by_obj_id(obj_id) : 0);
}
OBJ_TYPE *obj_by_cap(Untyped_capability cap)
{
return obj_by_id(cap.local_name());
}
/**
* Return first element of tree
*
* This function is used for removing tree elements step by step.
*/
OBJ_TYPE *first()
{
Lock::Guard lock_guard(_lock);
return (OBJ_TYPE *)_tree.first();
}
};
}
#endif /* _INCLUDE__BASE__OBJECT_POOL_H_ */

199
base/include/base/pager.h Normal file
View File

@@ -0,0 +1,199 @@
/*
* \brief Paging-server framework
* \author Norman Feske
* \author Christian Helmuth
* \date 2006-04-28
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__PAGER_H_
#define _INCLUDE__BASE__PAGER_H_
#include <base/thread.h>
#include <base/thread_state.h>
#include <base/errno.h>
#include <base/ipc_pager.h>
#include <base/printf.h>
#include <base/object_pool.h>
#include <base/signal.h>
#include <cap_session/cap_session.h>
#include <pager/capability.h>
namespace Genode {
/**
* Special server object for paging
*
* A 'Pager_object' is very similar to a 'Rpc_object'. It is just a
* special implementation for page-fault handling, which does not allow to
* define a "badge" for pager capabilities.
*/
class Pager_object : public Object_pool<Pager_object>::Entry
{
protected:
/**
* Local name for this pager object
*/
unsigned long _badge;
/**
* User-level signal handler registered for this pager object via
* 'Cpu_session::exception_handler()'.
*/
Signal_context_capability _exception_sigh;
public:
/**
* Contains information about exception state of corresponding thread.
*/
Thread_state state;
Pager_object(unsigned long badge) : _badge(badge) { }
virtual ~Pager_object() { }
unsigned long badge() const { return _badge; }
/**
* Interface to be implemented by a derived class
*
* \param ps 'Ipc_pager' stream
*
* Returns !0 on error and pagefault will not be answered.
*/
virtual int pager(Ipc_pager &ps) = 0;
void wake_up()
{
/* notify pager to wake up faulter */
Msgbuf<16> snd, rcv;
Native_capability pager = cap();
Ipc_client ipc_client(pager, &snd, &rcv);
ipc_client << this << IPC_CALL;
}
/**
* Assign user-level exception handler for the pager object
*/
void exception_handler(Signal_context_capability sigh)
{
_exception_sigh = sigh;
}
/**
* Notify exception handler about the occurrence of an exception
*/
void submit_exception_signal()
{
if (!_exception_sigh.valid()) return;
Signal_transmitter transmitter(_exception_sigh);
transmitter.submit();
}
};
/**
* A 'Pager_activation' processes one page fault of a 'Pager_object' at a time.
*/
class Pager_entrypoint;
class Pager_activation_base: public Thread_base
{
private:
Native_capability _cap;
Pager_entrypoint *_ep; /* entry point to which the
activation belongs */
/**
* Lock used for blocking until '_cap' is initialized
*/
Lock _cap_valid;
public:
Pager_activation_base(const char *name, size_t stack_size) :
Thread_base(name, stack_size),
_cap(Native_capability()), _ep(0), _cap_valid(Lock::LOCKED) { }
/**
* Set entry point, which the activation serves
*
* This function is only called by the 'Pager_entrypoint'
* constructor.
*/
void ep(Pager_entrypoint *ep) { _ep = ep; }
/**
* Thread interface
*/
void entry();
/**
* Return capability to this activation
*
* This function should only be called from 'Pager_entrypoint'
*/
Native_capability cap()
{
/* ensure that the initialization of our 'Ipc_pager' is done */
if (!_cap.valid())
_cap_valid.lock();
return _cap;
}
};
/**
* Paging entry point
*
* For a paging entry point can hold only one activation. So, paging is
* strictly serialized for one entry point.
*/
class Pager_entrypoint : public Object_pool<Pager_object>
{
private:
Pager_activation_base *_activation;
Cap_session *_cap_session;
public:
/**
* Constructor
*
* \param cap_session Cap_session for creating capabilities
* for the pager objects managed by this
* entry point
* \param a initial activation
*/
Pager_entrypoint(Cap_session *cap_session, Pager_activation_base *a = 0);
/**
* Associate Pager_object with the entry point
*/
Pager_capability manage(Pager_object *obj);
/**
* Dissolve Pager_object from entry point
*/
void dissolve(Pager_object *obj);
};
template <int STACK_SIZE>
class Pager_activation : public Pager_activation_base
{
public:
Pager_activation() : Pager_activation_base("pager", STACK_SIZE)
{ start(); }
};
}
#endif /* _INCLUDE__BASE__PAGER_H_ */

View File

@@ -0,0 +1,150 @@
/*
* \brief Platform environment of Genode process
* \author Norman Feske
* \author Christian Helmuth
* \date 2006-07-28
*
* This file is a generic variant of the platform environment, which is
* suitable for platforms such as L4ka::Pistachio and L4/Fiasco. On other
* platforms, it may be replaced by a platform-specific version residing
* in the corresponding 'base-<platform>' repository.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__PLATFORM_ENV_H_
#define _INCLUDE__BASE__PLATFORM_ENV_H_
#include <base/env.h>
#include <base/heap.h>
#include <parent/client.h>
#include <ram_session/client.h>
#include <rm_session/client.h>
#include <cpu_session/client.h>
#include <pd_session/client.h>
namespace Genode {
class Platform_env : public Env
{
class Expanding_rm_session_client : public Rm_session_client
{
Rm_session_capability _cap;
public:
Expanding_rm_session_client(Rm_session_capability cap)
: Rm_session_client(cap), _cap(cap) { }
Local_addr attach(Dataspace_capability ds,
size_t size = 0, off_t offset = 0,
bool use_local_addr = false,
Local_addr local_addr = (addr_t)0) {
bool try_again;
do {
try_again = false;
try {
return Rm_session_client::attach(ds, size, offset,
use_local_addr,
local_addr);
} catch (Rm_session::Out_of_metadata) {
/* give up if the error occurred a second time */
if (try_again)
break;
PINF("upgrade quota donation for Env::RM session");
env()->parent()->upgrade(_cap, "ram_quota=8K");
try_again = true;
}
} while (try_again);
return (addr_t)0;
}
};
class Expanding_ram_session_client : public Ram_session_client
{
Ram_session_capability _cap;
public:
Expanding_ram_session_client(Ram_session_capability cap)
: Ram_session_client(cap), _cap(cap) { }
Ram_dataspace_capability alloc(size_t size) {
bool try_again;
do {
try_again = false;
try {
return Ram_session_client::alloc(size);
} catch (Ram_session::Out_of_metadata) {
/* give up if the error occurred a second time */
if (try_again)
break;
PINF("upgrade quota donation for Env::RAM session");
env()->parent()->upgrade(_cap, "ram_quota=8K");
try_again = true;
}
} while (try_again);
return Ram_dataspace_capability();
}
};
private:
Parent_client _parent_client;
Parent *_parent;
Ram_session_capability _ram_session_cap;
Expanding_ram_session_client _ram_session_client;
Cpu_session_client _cpu_session_client;
Expanding_rm_session_client _rm_session_client;
Pd_session_client _pd_session_client;
Heap _heap;
public:
/**
* Standard constructor
*/
Platform_env()
:
_parent_client(Genode::parent_cap()), _parent(&_parent_client),
_ram_session_cap(static_cap_cast<Ram_session>(parent()->session("Env::ram_session", ""))),
_ram_session_client(_ram_session_cap),
_cpu_session_client(static_cap_cast<Cpu_session>(parent()->session("Env::cpu_session", ""))),
_rm_session_client(static_cap_cast<Rm_session>(parent()->session("Env::rm_session", ""))),
_pd_session_client(static_cap_cast<Pd_session>(parent()->session("Env::pd_session", ""))),
_heap(ram_session(), rm_session())
{ }
/*******************
** Env interface **
*******************/
Parent *parent() { return _parent; }
Ram_session *ram_session() { return &_ram_session_client; }
Ram_session_capability ram_session_cap() { return _ram_session_cap; }
Cpu_session *cpu_session() { return &_cpu_session_client; }
Rm_session *rm_session() { return &_rm_session_client; }
Pd_session *pd_session() { return &_pd_session_client; }
Allocator *heap() { return &_heap; }
};
}
#endif /* _INCLUDE__BASE__PLATFORM_ENV_H_ */

105
base/include/base/printf.h Normal file
View File

@@ -0,0 +1,105 @@
/*
* \brief Interface of the printf backend
* \author Norman Feske
* \date 2006-04-08
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__PRINTF_H_
#define _INCLUDE__BASE__PRINTF_H_
#include <stdarg.h>
namespace Genode {
/**
* For your convenience...
*/
void printf(const char *format, ...) __attribute__((format(printf, 1, 2)));
void vprintf(const char *format, va_list) __attribute__((format(printf, 1, 0)));
}
#define ESC_LOG "\033[33m"
#define ESC_DBG "\033[33m"
#define ESC_INF "\033[32m"
#define ESC_WRN "\033[34m"
#define ESC_ERR "\033[31m"
#define ESC_END "\033[0m"
/**
* Remove colored output from release version
*/
#ifdef GENODE_RELEASE
#undef ESC_LOG
#undef ESC_DBG
#undef ESC_INF
#undef ESC_WRN
#undef ESC_ERR
#undef ESC_END
#define ESC_LOG
#define ESC_DBG
#define ESC_INF
#define ESC_WRN
#define ESC_ERR
#define ESC_END
#endif /* GENODE_RELEASE */
/*
* We're using heavy CPP wizardry here to prevent compiler errors after macro
* expansion. Each macro works as follows:
*
* - Support one format string plus zero or more arguments.
* - Put all static strings (including the format string) in the first argument
* of the call to printf() and let the compiler merge them.
* - Append the function name (magic static string variable) as first argument.
* - (Optionally) append the arguments to the macro with ", ##__VA_ARGS__". CPP
* only appends the comma and arguments if __VA__ARGS__ is not empty,
* otherwise nothing (not even the comma) is appended.
*/
/**
* Print debug message with function name
*/
#define PDBG(fmt, ...) \
Genode::printf("%s: " ESC_DBG fmt ESC_END "\n", \
__PRETTY_FUNCTION__, ##__VA_ARGS__ )
/**
* Suppress debug messages in release version
*/
#ifdef GENODE_RELEASE
#undef PDBG
#define PDBG(fmt, ...)
#endif /* GENODE_RELEASE */
/**
* Print log message
*/
#define PLOG(fmt, ...) \
Genode::printf(ESC_LOG fmt ESC_END "\n", ##__VA_ARGS__ )
/**
* Print status-information message
*/
#define PINF(fmt, ...) \
Genode::printf(ESC_INF fmt ESC_END "\n", ##__VA_ARGS__ )
/**
* Print warning message
*/
#define PWRN(fmt, ...) \
Genode::printf(ESC_WRN fmt ESC_END "\n", ##__VA_ARGS__ )
/**
* Print error message
*/
#define PERR(fmt, ...) \
Genode::printf(ESC_ERR fmt ESC_END "\n", ##__VA_ARGS__ )
#endif /* _INCLUDE__BASE__PRINTF_H_ */

View File

@@ -0,0 +1,92 @@
/*
* \brief Process-creation interface
* \author Norman Feske
* \date 2006-06-22
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__PROCESS_H_
#define _INCLUDE__BASE__PROCESS_H_
#include <ram_session/capability.h>
#include <rm_session/connection.h>
#include <pd_session/connection.h>
#include <cpu_session/client.h>
#include <parent/capability.h>
namespace Genode {
class Process
{
private:
Pd_connection _pd;
Thread_capability _thread0_cap;
Cpu_session_client _cpu_session_client;
Rm_session_client _rm_session_client;
static Dataspace_capability _dynamic_linker_cap;
/*
* Hook for passing additional platform-specific session
* arguments to the PD session. For example, on Linux a new
* process is created locally via 'fork' and the new PID gets
* then communicated to core via a PD-session argument.
*/
enum { PRIV_ARGBUF_LEN = 32 };
char _priv_pd_argbuf[PRIV_ARGBUF_LEN];
const char *_priv_pd_args(Parent_capability parent_cap,
Dataspace_capability elf_data_ds,
const char *name, char *const argv[]);
public:
/**
* Constructor
*
* \param elf_data_ds dataspace that contains the elf binary
* \param ram_session RAM session providing the BSS for the
* new protection domain
* \param cpu_session CPU session for the new protection domain
* \param rm_session RM session for the new protection domain
* \param parent parent of the new protection domain
* \param name name of protection domain (can be used
* in debugging)
* \param argv not used
*
* The dataspace 'elf_data_ds' can be read-only.
*
* On construction of a protection domain, execution of the initial
* thread is started immediately.
*/
Process(Dataspace_capability elf_data_ds,
Ram_session_capability ram_session,
Cpu_session_capability cpu_session,
Rm_session_capability rm_session,
Parent_capability parent,
const char *name,
char *const argv[]);
/**
* Destructor
*
* When called, the protection domain gets killed.
*/
~Process();
static void dynamic_linker(Dataspace_capability dynamic_linker_cap)
{
_dynamic_linker_cap = dynamic_linker_cap;
}
Pd_session_capability pd_session_cap() const { return _pd.cap(); }
};
}
#endif /* _INCLUDE__BASE__PROCESS_H_ */

287
base/include/base/rpc.h Normal file
View File

@@ -0,0 +1,287 @@
/*
* \brief Support for defining and working with RPC interfaces
* \author Norman Feske
* \date 2011-03-28
*/
/*
* Copyright (C) 2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__RPC_H_
#define _INCLUDE__BASE__RPC_H_
#include <util/meta.h>
/**
* Macro for declaring a RPC function
*
* \param rpc_name type name representing the RPC function
* \param ret_type RPC return type
* \param func_name RPC function name
* \param exc_types type list of exceptions that may be thrown by the
* function
* \param ... variable number of RPC function arguments
*
* Each RPC function is represented by a struct that contains the meta data
* about the function arguments, the return type, and the exception types.
* Furthermore, it contains an adapter function called 'serve', which is used
* on the server side to invoke the server-side implementation of the RPC
* function. It takes an a 'Pod_tuple' argument structure and calls the
* server-side function with individual arguments using the 'call_member'
* mechanism provided by 'meta.h'.
*/
#define GENODE_RPC_THROW(rpc_name, ret_type, func_name, exc_types, ...) \
struct rpc_name { \
typedef ::Genode::Meta::Ref_args<__VA_ARGS__>::Type Client_args; \
typedef ::Genode::Meta::Pod_args<__VA_ARGS__>::Type Server_args; \
typedef ::Genode::Trait::Exc_list<exc_types>::Type Exceptions; \
typedef ::Genode::Trait::Call_return<ret_type>::Type Ret_type; \
\
template <typename SERVER, typename RET> \
static void serve(SERVER &server, Server_args &args, RET &ret) { \
::Genode::Meta::call_member<RET, SERVER, Server_args> \
(ret, server, args, &SERVER::func_name); } \
};
/**
* Shortcut for 'GENODE_RPC_THROW' for an RPC that throws no exceptions
*/
#define GENODE_RPC(rpc_name, ret_type, func_name, ...) \
GENODE_RPC_THROW(rpc_name, ret_type, func_name, GENODE_TYPE_LIST(), __VA_ARGS__)
/**
* Macro for declaring a RPC interface
*
* \param ... list of RPC functions as declared via 'GENODE_RPC'
*
* An RPC interface is represented as type list of RPC functions. The RPC
* opcode for each function is implicitly defined by its position within
* this type list.
*/
#define GENODE_RPC_INTERFACE(...) \
typedef GENODE_TYPE_LIST(__VA_ARGS__) Rpc_functions
/**
* Macro for declaring a RPC interface derived from another RPC interface
*
* \param base class hosting the RPC interface to be inherited
* \param ... list of the locally declared RPC functions
*
* RPC interface inheritance is simply the concatenation of the type list
* of RPC functions declared for the base interface and the locally declared
* RPC functions. By appending the local RPC functions, the RPC opcodes of
* the inherited RPC functions are preserved.
*/
#define GENODE_RPC_INTERFACE_INHERIT(base, ...) \
typedef ::Genode::Meta::Append<base::Rpc_functions, \
GENODE_TYPE_LIST(__VA_ARGS__) >::Type \
Rpc_functions;
namespace Genode {
struct Rpc_arg_in { enum { IN = true, OUT = false }; };
struct Rpc_arg_out { enum { IN = false, OUT = true }; };
struct Rpc_arg_inout { enum { IN = true, OUT = true }; };
namespace Trait {
/*****************************************
** Type meta data used for marshalling **
*****************************************/
template <typename T> struct Rpc_direction;
template <typename T> struct Rpc_direction { typedef Rpc_arg_in Type; };
template <typename T> struct Rpc_direction<T const *> { typedef Rpc_arg_in Type; };
template <typename T> struct Rpc_direction<T const &> { typedef Rpc_arg_in Type; };
template <typename T> struct Rpc_direction<T*> { typedef Rpc_arg_inout Type; };
template <typename T> struct Rpc_direction<T&> { typedef Rpc_arg_inout Type; };
/**
* Representation of function return type
*
* For RPC functions with no return value, we use a pseudo return value
* of type 'Empty' instead. This way, we can process all functions
* regardless of the presence of a return type with the same meta
* program.
*/
template <typename T> struct Call_return { typedef T Type; };
template <> struct Call_return<void> { typedef Meta::Empty Type; };
/**
* Representation of the list of exception types
*
* This template maps the special case of a 'Type_list' with no arguments
* to the 'Empty' type.
*/
template <typename T> struct Exc_list { typedef T Type; };
template <> struct Exc_list<Meta::Type_list<> > { typedef Meta::Empty Type; };
}
/*******************************************************
** Automated computation of RPC message-buffer sizes **
*******************************************************/
/**
* Determine transfer size of an RPC argument
*
* For data arguments, the transfer size is the size of the data type. For
* pointer arguments, the transfer size is the size of the pointed-to
* object.
*/
template <typename T>
struct Rpc_transfer_size {
enum { Value = Meta::Round_to_machine_word<sizeof(T)>::Value }; };
template <typename T>
struct Rpc_transfer_size<T *> {
enum { Value = Meta::Round_to_machine_word<sizeof(T)>::Value }; };
/**
* Type used for transmitting the opcode of a RPC function (used for RPC call)
*/
typedef int Rpc_opcode;
/**
* Type used for transmitting exception information (used for RPC reply)
*/
typedef int Rpc_exception_code;
/**
* Special exception code used to respond to illegal opcodes
*/
enum { RPC_INVALID_OPCODE = -1 };
/**
* Opcode base used for passing exception information
*/
enum { RPC_EXCEPTION_BASE = -1000 };
/**
* Return the accumulated size of RPC arguments
*
* \param ARGS typelist with RPC arguments
* \param IN true to account for RPC-input arguments
* \param OUT true to account for RPC-output arguments
*/
template <typename ARGS, bool IN, bool OUT>
struct Rpc_args_size {
typedef typename ARGS::Head This;
enum { This_size = Rpc_transfer_size<This>::Value };
enum { Value = (IN && Trait::Rpc_direction<This>::Type::IN ? This_size : 0)
+ (OUT && Trait::Rpc_direction<This>::Type::OUT ? This_size : 0)
+ Rpc_args_size<typename ARGS::Tail, IN, OUT>::Value }; };
template <bool IN, bool OUT>
struct Rpc_args_size<Meta::Empty, IN, OUT> { enum { Value = 0 }; };
/**
* Return the size of the return value
*
* The return type of an RPC function can be either a real type or
* 'Meta::Empty' if the function has no return value. In the latter case,
* 'Retval_size' returns 0 instead of the non-zero size of 'Meta::Empty'.
*/
template <typename RET>
struct Rpc_retval_size { enum { Value = sizeof(RET) }; };
template <>
struct Rpc_retval_size<Meta::Empty> { enum { Value = 0 }; };
/**
* Calculate the payload size of a RPC message
*
* Setting either IN or OUT to true, the call size or respectively the
* reply size is calculated. Protocol-related message parts (such as RPC
* opcode or exception status) is not accounted for.
*/
template <typename RPC_FUNCTION, bool IN, bool OUT>
struct Rpc_msg_payload_size {
typedef typename RPC_FUNCTION::Server_args Args;
enum { Value = Rpc_args_size<Args, IN, OUT>::Value }; };
/**
* RPC message type
*
* An RPC message can be either a 'RPC_CALL' (from client to server) or a
* 'RPC_REPLY' (from server to client). The message payload for each type
* depends on the RPC function arguments as well as protocol-specific
* message parts. For example, a 'RPC_CALL' requires the transmission of
* the RPC opcode to select the server-side RPC function. In contrast, a
* 'RPC_REPLY' message carries along the exception state returned from the
* server-side RPC implementation. The 'Rpc_msg_type' is used as template
* argument to specialize the calculation of message sizes for each of both
* cases.
*/
enum Rpc_msg_type { RPC_CALL, RPC_REPLY };
/**
* Calculate size of RPC message
*
* The send and receive cases are handled by respective template
* specializations for the 'MSG_TYPE' template argument.
*/
template <typename RPC_FUNCTION, Rpc_msg_type MSG_TYPE>
struct Rpc_function_msg_size;
template <typename RPC_FUNCTION>
struct Rpc_function_msg_size<RPC_FUNCTION, RPC_CALL> {
enum { Value = Rpc_msg_payload_size<RPC_FUNCTION, true, false>::Value
+ sizeof(Rpc_opcode) }; };
template <typename RPC_FUNCTION>
struct Rpc_function_msg_size<RPC_FUNCTION, RPC_REPLY> {
enum { Value = Rpc_msg_payload_size<RPC_FUNCTION, false, true>::Value
+ Rpc_retval_size<typename RPC_FUNCTION::Ret_type>::Value
+ sizeof(Rpc_exception_code) }; };
/**
* Calculate size of message buffer needed for a list of RPC functions
*
* \param RPC_FUNCTIONS type list of RPC functions
*
* The returned 'Value' is the maximum of all function's message sizes.
*/
template <typename RPC_FUNCTIONS, Rpc_msg_type MSG_TYPE>
struct Rpc_function_list_msg_size {
enum {
This_size = Rpc_function_msg_size<typename RPC_FUNCTIONS::Head, MSG_TYPE>::Value,
Tail_size = Rpc_function_list_msg_size<typename RPC_FUNCTIONS::Tail, MSG_TYPE>::Value,
Value = (This_size > Tail_size) ? This_size : Tail_size }; };
template <Rpc_msg_type MSG_TYPE>
struct Rpc_function_list_msg_size<Meta::Empty, MSG_TYPE> { enum { Value = 0 }; };
/**
* Calculate size of message buffer needed for an RPC interface
*
* \param RPC_IF class that hosts the RPC interface declaration
*
* This is a convenience wrapper for 'Rpc_function_list_msg_size'.
*/
template <typename RPC_IF, Rpc_msg_type MSG_TYPE>
struct Rpc_interface_msg_size {
typedef typename RPC_IF::Rpc_functions Rpc_functions;
enum { Value = Rpc_function_list_msg_size<Rpc_functions, MSG_TYPE>::Value }; };
}
#endif /* _INCLUDE__BASE__RPC_H_ */

View File

@@ -0,0 +1,121 @@
/*
* \brief Helpers for non-ordinary RPC arguments
* \author Norman Feske
* \date 2011-04-06
*/
/*
* Copyright (C) 2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__RPC_ARGS_H_
#define _INCLUDE__BASE__RPC_ARGS_H_
#include <util/string.h>
#include <base/stdint.h>
namespace Genode {
/**
* Base class of 'Rpc_in_buffer'
*/
class Rpc_in_buffer_base
{
protected:
const char *_base;
size_t _size;
/**
* Construct buffer from null-terminated string
*/
explicit Rpc_in_buffer_base(const char *str)
: _base(str), _size(strlen(str) + 1) { }
/**
* Construct an empty buffer by default
*/
Rpc_in_buffer_base(): _base(0), _size(0) { }
public:
/**
* Construct buffer
*/
Rpc_in_buffer_base(const char *base, size_t size)
: _base(base), _size(size) { }
const char *base() const { return _base; }
size_t size() const { return _size; }
};
/**
* Buffer with size constrain
*/
template <size_t MAX>
class Rpc_in_buffer : public Rpc_in_buffer_base
{
private:
/*
* This member is only there to pump up the size of the object such
* that 'sizeof()' returns the maximum buffer size when queried by
* the RPC framework.
*/
char _balloon[MAX];
public:
enum { MAX_SIZE = MAX };
/**
* Construct buffer
*/
Rpc_in_buffer(const char *base, size_t size)
: Rpc_in_buffer_base(base, min(size, (size_t)MAX_SIZE)) { }
/**
* Construct buffer from null-terminated string
*/
Rpc_in_buffer(const char *str) : Rpc_in_buffer_base(str)
{
if (_size >= MAX_SIZE - 1)
_size = MAX_SIZE - 1;
}
/**
* Default constructor creates invalid buffer
*/
Rpc_in_buffer() { }
void operator = (Rpc_in_buffer<MAX_SIZE> const &from)
{
_base = from.base();
_size = from.size();
}
/**
* Return true if buffer contains a valid null-terminated string
*/
bool is_valid_string() const {
return (_size < MAX_SIZE) && (_size > 0) && (_base[_size - 1] == '\0'); }
/**
* Return buffer content as null-terminated string
*
* \return pointer to null-terminated string
*
* The function returns an empty string if the buffer does not hold
* a valid null-terminated string. To distinguish a buffer holding
* an invalid string from a buffer holding a valid empty string,
* the function 'is_valid_string' can be used.
*/
char const *string() const { return is_valid_string() ? base() : ""; }
};
}
#endif /* _INCLUDE__BASE__RPC_ARGS_H_ */

View File

@@ -0,0 +1,135 @@
/*
* \brief Support for performing RPC calls
* \author Norman Feske
* \date 2011-04-06
*/
/*
* Copyright (C) 2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__RPC_CLIENT_H_
#define _INCLUDE__BASE__RPC_CLIENT_H_
#include <base/ipc.h>
namespace Genode {
/**
* RPC client
*
* This class template is the base class of the client-side implementation
* of the specified 'RPC_INTERFACE'. Usually, it inherits the pure virtual
* functions declared in 'RPC_INTERFACE' and has the built-in facility to
* perform RPC calls to this particular interface. Hence, the client-side
* implementation of each pure virtual interface function comes down to a
* simple wrapper in the line of 'return call<Rpc_function>(arguments...)'.
*/
template <typename RPC_INTERFACE>
struct Rpc_client : Capability<RPC_INTERFACE>, RPC_INTERFACE
{
typedef RPC_INTERFACE Rpc_interface;
Rpc_client(Capability<RPC_INTERFACE> const &cap)
: Capability<RPC_INTERFACE>(cap) { }
};
/*********************************************************
** Implementation of 'Capability:call' functions **
*********************************************************/
template <typename RPC_INTERFACE>
template <typename ATL>
void Capability<RPC_INTERFACE>::
_marshal_args(Ipc_client &ipc_client, ATL &args)
{
if (Trait::Rpc_direction<typename ATL::Head>::Type::IN)
ipc_client << args.get();
_marshal_args(ipc_client, args._2);
}
template <typename RPC_INTERFACE>
template <typename T>
void Capability<RPC_INTERFACE>::
_unmarshal_result(Ipc_client &ipc_client, T &arg,
Meta::Overload_selector<Rpc_arg_out>)
{
ipc_client >> arg;
}
template <typename RPC_INTERFACE>
template <typename T>
void Capability<RPC_INTERFACE>::
_unmarshal_result(Ipc_client &ipc_client, T &arg,
Meta::Overload_selector<Rpc_arg_inout>)
{
_unmarshal_result(ipc_client, arg, Meta::Overload_selector<Rpc_arg_out>());
}
template <typename RPC_INTERFACE>
template <typename ATL>
void Capability<RPC_INTERFACE>::
_unmarshal_results(Ipc_client &ipc_client, ATL &args)
{
/*
* Unmarshal current argument. The overload of
* '_unmarshal_result' is selected depending on the RPC
* direction.
*/
typedef typename Trait::Rpc_direction<typename ATL::Head>::Type Rpc_dir;
_unmarshal_result(ipc_client, args.get(), Meta::Overload_selector<Rpc_dir>());
/* unmarshal remaining arguments */
_unmarshal_results(ipc_client, args._2);
}
template <typename RPC_INTERFACE>
template <typename IF>
void Capability<RPC_INTERFACE>::
_call(typename IF::Client_args &args, typename IF::Ret_type &ret)
{
/**
* Message buffer for RPC message
*
* The message buffer gets automatically dimensioned according to the
* specified 'IF' RPC function.
*/
enum { PROTOCOL_OVERHEAD = 4*sizeof(long),
CALL_MSG_SIZE = Rpc_function_msg_size<IF, RPC_CALL>::Value,
REPLY_MSG_SIZE = Rpc_function_msg_size<IF, RPC_REPLY>::Value };
Msgbuf<CALL_MSG_SIZE + PROTOCOL_OVERHEAD> call_buf;
Msgbuf<REPLY_MSG_SIZE + PROTOCOL_OVERHEAD> reply_buf;
Ipc_client ipc_client(*this, &call_buf, &reply_buf);
/* determine opcode of RPC function */
typedef typename RPC_INTERFACE::Rpc_functions Rpc_functions;
Rpc_opcode opcode = static_cast<int>(Meta::Index_of<Rpc_functions, IF>::Value);
/* marshal opcode and RPC input arguments */
ipc_client << opcode;
_marshal_args(ipc_client, args);
/* perform RPC, unmarshal return value */
ipc_client << IPC_CALL >> ret;
/* unmarshal RPC output arguments */
_unmarshal_results(ipc_client, args);
/* reflect callee-side exception at the caller */
_check_for_exceptions(ipc_client.result(),
Meta::Overload_selector<typename IF::Exceptions>());
}
}
#endif /* _INCLUDE__BASE__RPC_CLIENT_H_ */

View File

@@ -0,0 +1,394 @@
/*
* \brief Server-side API of the RPC framework
* \author Norman Feske
* \date 2006-04-28
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__RPC_SERVER_H_
#define _INCLUDE__BASE__RPC_SERVER_H_
#include <base/rpc.h>
#include <base/thread.h>
#include <base/ipc.h>
#include <base/object_pool.h>
#include <base/lock.h>
#include <base/printf.h>
#include <cap_session/cap_session.h>
namespace Genode {
/**
* RPC dispatcher implementing the specified RPC interface
*
* \param RPC_INTERFACE class providing the RPC interface description
* \param SERVER class to invoke for the server-side RPC functions
*
* This class is the base class of each server-side RPC implementation. It
* contains the logic for dispatching incoming RPC requests and calls the
* server functions according to the RPC declarations in 'RPC_INTERFACE'.
*
* If using the default argument for 'SERVER', the 'RPC_INTERFACE' is expected
* to contain the abstract interface for all RPC functions. So virtual functions
* must be declared in 'RPC_INTERFACE'. In contrast, by explicitly specifying
* the 'SERVER' argument, the server-side dispatching performs direct function
* calls to the respective member functions of the 'SERVER' class and thereby
* omits virtual functions calls.
*/
template <typename RPC_INTERFACE, typename SERVER = RPC_INTERFACE>
class Rpc_dispatcher : public RPC_INTERFACE
{
/**
* Shortcut for the type list of RPC functions provided by this server
* component
*/
typedef typename RPC_INTERFACE::Rpc_functions Rpc_functions;
protected:
template <typename ARG_LIST>
void _read_args(Ipc_istream &is, ARG_LIST &args)
{
if (Trait::Rpc_direction<typename ARG_LIST::Head>::Type::IN)
is >> args._1;
_read_args(is, args._2);
}
void _read_args(Ipc_istream &is, Meta::Empty) { }
template <typename ARG_LIST>
void _write_results(Ipc_ostream &os, ARG_LIST &args)
{
if (Trait::Rpc_direction<typename ARG_LIST::Head>::Type::OUT)
os << args._1;
_write_results(os, args._2);
}
void _write_results(Ipc_ostream &os, Meta::Empty) { }
template <typename RPC_FUNCTION, typename EXC_TL>
Rpc_exception_code _do_serve(typename RPC_FUNCTION::Server_args &args,
typename RPC_FUNCTION::Ret_type &ret,
Meta::Overload_selector<RPC_FUNCTION, EXC_TL>)
{
enum { EXCEPTION_CODE = RPC_EXCEPTION_BASE - Meta::Length<EXC_TL>::Value };
try {
typedef typename EXC_TL::Tail Exc_tail;
return _do_serve(args, ret,
Meta::Overload_selector<RPC_FUNCTION, Exc_tail>());
} catch (typename EXC_TL::Head) { return EXCEPTION_CODE; }
}
template <typename RPC_FUNCTION>
Rpc_exception_code _do_serve(typename RPC_FUNCTION::Server_args &args,
typename RPC_FUNCTION::Ret_type &ret,
Meta::Overload_selector<RPC_FUNCTION, Meta::Empty>)
{
RPC_FUNCTION::serve(*static_cast<SERVER *>(this), args, ret);
return 0;
}
template <typename RPC_FUNCTIONS_TO_CHECK>
Rpc_exception_code _do_dispatch(Rpc_opcode opcode, Ipc_istream &is, Ipc_ostream &os,
Meta::Overload_selector<RPC_FUNCTIONS_TO_CHECK>)
{
using namespace Meta;
typedef typename RPC_FUNCTIONS_TO_CHECK::Head This_rpc_function;
if (opcode == Index_of<Rpc_functions, This_rpc_function>::Value) {
/*
* Argument receive buffer
*
* To prevent the compiler from complaining about the
* 'Server_args' data structure from being uninitialized,
* we instantiate the variable as volatile and strip away
* the volatile-ness when using it.
*/
struct {
typedef typename This_rpc_function::Server_args Data;
volatile Data _data;
Data &data() { return *(Data *)(&_data); }
} args;
/* read arguments from istream */
_read_args(is, args.data());
/*
* Dispatch call to matching RPC base class, using
* 'This_rpc_function' and the list of its exceptions to
* select the overload.
*/
typedef typename This_rpc_function::Exceptions Exceptions;
typename This_rpc_function::Ret_type ret;
Rpc_exception_code exc;
exc = _do_serve(args.data(), ret, Overload_selector<This_rpc_function, Exceptions>());
os << ret;
/* write results to ostream 'os' */
_write_results(os, args.data());
return exc;
}
typedef typename RPC_FUNCTIONS_TO_CHECK::Tail Tail;
return _do_dispatch(opcode, is, os, Overload_selector<Tail>());
}
int _do_dispatch(int opcode, Ipc_istream &, Ipc_ostream &,
Meta::Overload_selector<Meta::Empty>)
{
PERR("invalid opcode %d\n", opcode);
return RPC_INVALID_OPCODE;
}
/**
* Handle corner case of having an RPC interface with no RPC functions
*/
Rpc_exception_code _do_dispatch(int opcode, Ipc_istream &, Ipc_ostream &,
Meta::Overload_selector<Meta::Type_list<> >)
{
return 0;
}
/**
* Protected constructor
*
* This class is only usable as base class.
*/
Rpc_dispatcher() { }
public:
Rpc_exception_code dispatch(int opcode, Ipc_istream &is, Ipc_ostream &os)
{
return _do_dispatch(opcode, is, os,
Meta::Overload_selector<Rpc_functions>());
}
};
class Rpc_object_base : public Object_pool<Rpc_object_base>::Entry
{
private:
Lock _dispatch_lock;
public:
virtual ~Rpc_object_base() { }
/*
* Serialize access with dispatch loop
*
* These methods are used for the destruction of server objects.
* They are exclusively used by 'Server_activation_base::entry()'
* and 'Rpc_entrypoint::dissolve()'. Never use this lock for other
* purposes.
*/
void lock() { _dispatch_lock.lock(); }
void unlock() { _dispatch_lock.unlock(); }
/**
* Interface to be implemented by a derived class
*
* \param op opcode of invoked method
* \param is Ipc_input stream with method arguments
* \param os Ipc_output stream for storing method results
*/
virtual int dispatch(int op, Ipc_istream &is, Ipc_ostream &os) = 0;
};
/**
* Object that is accessible from remote protection domains
*
* A 'Rpc_object' is a locally implemented object that can be referenced
* from the outer world using a capability. The capability gets created
* when attaching a 'Rpc_object' to a 'Rpc_entrypoint'.
*/
template <typename RPC_INTERFACE, typename SERVER = RPC_INTERFACE>
struct Rpc_object : Rpc_object_base, Rpc_dispatcher<RPC_INTERFACE, SERVER>
{
/*****************************
** Server-object interface **
*****************************/
Rpc_exception_code dispatch(int opcode, Ipc_istream &is, Ipc_ostream &os)
{
return Rpc_dispatcher<RPC_INTERFACE, SERVER>::dispatch(opcode, is, os);
}
Capability<RPC_INTERFACE> const cap() const
{
return reinterpret_cap_cast<RPC_INTERFACE>(Rpc_object_base::cap());
}
};
/**
* RPC entrypoint serving RPC objects
*
* The entrypoint's thread will initialize its capability but will not
* immediately enable the processing of requests. This way, the
* activation-using server can ensure that it gets initialized completely
* before the first capability invocations come in. Once the server is
* ready, it must enable the entrypoint explicitly by calling the
* 'activate()' function. The 'start_on_construction' argument is a
* shortcut for the common case where the server's capability is handed
* over to other parties _after_ the server is completely initialized.
*/
class Rpc_entrypoint : Thread_base, public Object_pool<Rpc_object_base>
{
private:
/**
* Prototype capability to derive capabilities for RPC objects
* from.
*/
Untyped_capability _cap;
enum { SND_BUF_SIZE = 1024, RCV_BUF_SIZE = 1024 };
Msgbuf<SND_BUF_SIZE> _snd_buf;
Msgbuf<RCV_BUF_SIZE> _rcv_buf;
/**
* Hook to let low-level thread init code access private members
*
* This function is only used on NOVA.
*/
static void _activation_entry();
protected:
Ipc_server *_ipc_server;
Rpc_object_base *_curr_obj; /* currently dispatched RPC object */
Lock _curr_obj_lock; /* for the protection of '_curr_obj' */
Lock _cap_valid; /* thread startup synchronization */
Lock _delay_start; /* delay start of request dispatching */
Cap_session *_cap_session; /* for creating capabilities */
/**
* Back-end function to associate RPC object with the entry point
*/
Untyped_capability _manage(Rpc_object_base *obj);
/**
* Back-end function to Dissolve RPC object from entry point
*/
void _dissolve(Rpc_object_base *obj);
/**
* Force activation to cancel dispatching the specified server object
*/
void _leave_server_object(Rpc_object_base *obj);
/**
* Wait until the entrypoint activation is initialized
*/
void _block_until_cap_valid();
/**
* Thread interface
*/
void entry();
public:
/**
* Constructor
*
* \param cap_session 'Cap_session' for creating capabilities
* for the RPC objects managed by this entry
* point
* \param stack_size stack size of entrypoint thread
* \param name name of entrypoint thread
*/
Rpc_entrypoint(Cap_session *cap_session, size_t stack_size,
char const *name, bool start_on_construction = true);
/**
* Associate RPC object with the entry point
*/
template <typename RPC_INTERFACE, typename RPC_SERVER>
Capability<RPC_INTERFACE>
manage(Rpc_object<RPC_INTERFACE, RPC_SERVER> *obj)
{
Untyped_capability untyped_cap = _manage(obj);
/*
* Turn untyped capability returned by '_entrypoint.manage()'
* to a capability with the type corresponding to the supplied
* RPC object.
*/
Capability<RPC_INTERFACE> typed_cap;
memcpy(&typed_cap, &untyped_cap, sizeof(typed_cap));
return typed_cap;
}
/**
* Dissolve server object from entry point
*/
template <typename RPC_INTERFACE, typename RPC_SERVER>
void dissolve(Rpc_object<RPC_INTERFACE, RPC_SERVER> *obj)
{
_dissolve(obj);
}
/**
* Activate entrypoint, start processing RPC requests
*/
void activate();
/**
* Request reply capability for current call
*
* Note: This is a temporary API function, which is going to be
* removed. Please do not use this function.
*
* Typically, a capability obtained via this function is used as
* argument of 'intermediate_reply'.
*/
Untyped_capability reply_dst();
/**
* Prevent reply of current request
*
* Note: This is a temporary API function, which is going to be
* removed. Please do not use this function.
*
* This function can be used to keep the calling client blocked
* after the server has finished the processing of the client's
* request. At a later time, the server may chose to unblock the
* client via the 'intermedate_reply' function.
*/
void omit_reply();
/**
* Send a reply out of the normal call-reply order
*
* Note: This is a temporary API function, which is going to be
* removed. Please do not use this function.
*
* In combination with the 'reply_dst' accessor functions, this
* function can be used to implement services that dispatch client
* requests out of order. In such cases, the server activation may
* send reply messages to multiple blocking clients before
* answering the original call.
*/
void explicit_reply(Untyped_capability reply_cap, int return_value);
};
}
#endif /* _INCLUDE__BASE__RPC_SERVER_H_ */

View File

@@ -0,0 +1,173 @@
/*
* \brief Semaphore
* \author Norman Feske
* \author Christian Prochaska
* \date 2006-09-22
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__SEMAPHORE_H_
#define _INCLUDE__BASE__SEMAPHORE_H_
#include <base/lock.h>
#include <util/list.h>
#include <util/fifo.h>
namespace Genode {
/**
* Semaphore queue interface
*/
class Semaphore_queue
{
public:
/**
* Semaphore-queue elements
*
* A queue element represents a thread blocking on the
* semaphore.
*/
class Element : Lock
{
public:
/**
* Constructor
*/
Element() : Lock(LOCKED) { }
void block() { lock(); }
void wake_up() { unlock(); }
};
/**
* Add new queue member that is going to block
*/
void enqueue(Element *e);
/**
* Dequeue queue member to wake up next
*/
Element *dequeue();
};
/**
* First-in-first-out variant of the semaphore-queue interface
*/
class Fifo_semaphore_queue : public Semaphore_queue
{
public:
class Element : public Semaphore_queue::Element,
public Fifo<Element>::Element { };
private:
Fifo<Element> _fifo;
public:
void enqueue(Element *e) { _fifo.enqueue(e); }
Element *dequeue() { return _fifo.dequeue(); }
};
/**
* Semaphore base template
*
* \param QT semaphore wait queue type implementing the
* 'Semaphore_queue' interface
* \param QTE wait-queue element type implementing the
* 'Semaphore_queue::Element' interface
*
* The queuing policy is defined via the QT and QTE types.
* This way, the platform-specific semaphore-queueing policies
* such as priority-sorted queueing can be easily supported.
*/
template <typename QT, typename QTE>
class Semaphore_template
{
protected:
int _cnt;
Lock _meta_lock;
QT _queue;
public:
/**
* Constructor
*
* \param n initial counter value of the semphore
*/
Semaphore_template(int n = 0) : _cnt(n) { }
~Semaphore_template()
{
/* synchronize destruction with unfinished 'up()' */
try { _meta_lock.lock(); } catch (...) { }
}
void up()
{
Lock::Guard lock_guard(_meta_lock);
if (++_cnt > 0)
return;
/*
* Remove element from queue and wake up the corresponding
* blocking thread
*/
_queue.dequeue()->wake_up();
}
void down()
{
_meta_lock.lock();
if (--_cnt < 0) {
/*
* Create semaphore queue element representing the thread
* in the wait queue.
*/
QTE queue_element;
_queue.enqueue(&queue_element);
_meta_lock.unlock();
/*
* The thread is going to block on a local lock now,
* waiting for getting waked from another thread
* calling 'up()'
* */
queue_element.block();
} else {
_meta_lock.unlock();
}
}
/**
* Return current semaphore counter
*/
int cnt() { return _cnt; }
};
/**
* Semaphore with default behaviour
*/
typedef Semaphore_template<Fifo_semaphore_queue, Fifo_semaphore_queue::Element> Semaphore;
}
#endif /* _INCLUDE__BASE__SEMAPHORE_H_ */

414
base/include/base/service.h Normal file
View File

@@ -0,0 +1,414 @@
/*
* \brief Service management framework
* \author Norman Feske
* \date 2006-07-12
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__SERVICE_H_
#define _INCLUDE__BASE__SERVICE_H_
#include <root/client.h>
#include <base/printf.h>
#include <util/list.h>
#include <ram_session/client.h>
#include <base/env.h>
namespace Genode {
/**
* Client role
*
* A client is someone who applies for a service. If the service is not
* available yet, we enqueue the client into a wait queue and wake him up
* as soon as the requested service gets available.
*/
class Client : public List<Client>::Element
{
private:
Cancelable_lock _service_apply_lock;
const char *_apply_for;
public:
/**
* Constructor
*/
Client(): _service_apply_lock(Lock::LOCKED), _apply_for(0) { }
virtual ~Client() { }
/**
* Set/Request service name that we are currently applying for
*/
void apply_for(const char *apply_for) { _apply_for = apply_for; }
const char *apply_for() { return _apply_for; }
/**
* Service wait queue support
*/
void sleep() { _service_apply_lock.lock(); }
void wakeup() { _service_apply_lock.unlock(); }
};
/**
* Server role
*
* A server is a process that provides one or multiple services. For the
* most part, this class is used as an opaque key to represent the server
* role.
*/
class Server
{
private:
Ram_session_capability _ram;
public:
/**
* Constructor
*
* \param ram RAM session capability of the server process used,
* for quota transfers from/to the server
*/
Server(Ram_session_capability ram): _ram(ram) { }
/**
* Return RAM session capability of the server process
*/
Ram_session_capability ram_session_cap() const { return _ram; }
};
class Service : public List<Service>::Element
{
public:
enum { MAX_NAME_LEN = 32 };
private:
char _name[MAX_NAME_LEN];
public:
/*********************
** Exception types **
*********************/
class Invalid_args { };
class Unavailable { };
class Quota_exceeded { };
/**
* Constructor
*
* \param name service name
*/
Service(const char *name) { strncpy(_name, name, sizeof(_name)); }
virtual ~Service() { }
/**
* Return service name
*/
const char *name() const { return _name; }
/**
* Create session
*
* \param args session-construction arguments
*
* \throw Invalid_args
* \throw Unavailable
* \throw Quota_exceeded
*/
virtual Session_capability session(const char *args) = 0;
/**
* Extend resource donation to an existing session
*/
virtual void upgrade(Session_capability session, const char *args) = 0;
/**
* Close session
*/
virtual void close(Session_capability session) { }
/**
* Return server providing the service
*/
virtual Server *server() const { return 0; }
/**
* Return the RAM session to be used for trading resources
*/
Ram_session_capability ram_session_cap()
{
if (server())
return server()->ram_session_cap();
return Ram_session_capability();
}
};
/**
* Representation of a locally implemented service
*/
class Local_service : public Service
{
private:
Root *_root;
public:
Local_service(const char *name, Root *root)
: Service(name), _root(root) { }
Session_capability session(const char *args)
{
try { return _root->session(args); }
catch (Root::Invalid_args) { throw Invalid_args(); }
catch (Root::Unavailable) { throw Unavailable(); }
catch (Root::Quota_exceeded) { throw Quota_exceeded(); }
}
void upgrade(Session_capability session, const char *args) {
_root->upgrade(session, args); }
void close(Session_capability session) {
_root->close(session); }
};
/**
* Representation of a service provided by our parent
*/
class Parent_service : public Service
{
public:
Parent_service(const char *name) : Service(name) { }
Session_capability session(const char *args)
{
try { return env()->parent()->session(name(), args); }
catch (Parent::Unavailable) {
PWRN("parent has no service \"%s\"", name());
throw Unavailable();
}
catch (Parent::Quota_exceeded) { throw Quota_exceeded(); }
}
void upgrade(Session_capability session, const char *args) {
env()->parent()->upgrade(session, args); }
void close(Session_capability session) {
env()->parent()->close(session); }
};
/**
* Representation of a service that is implemented in a child
*/
class Child_service : public Service
{
private:
Root_capability _root_cap;
Root_client _root;
Server *_server;
public:
/**
* Constructor
*
* \param name name of service
* \param root capability to root interface
* \param server server process providing the service
*/
Child_service(const char *name,
Root_capability root,
Server *server)
: Service(name), _root_cap(root), _root(root), _server(server) { }
Server *server() const { return _server; }
Session_capability session(const char *args)
{
if (!_root_cap.valid())
throw Unavailable();
try { return _root.session(args); }
catch (Root::Invalid_args) { throw Invalid_args(); }
catch (Root::Unavailable) { throw Unavailable(); }
catch (Root::Quota_exceeded) { throw Quota_exceeded(); }
}
void upgrade(Session_capability sc, const char *args)
{
if (!_root_cap.valid())
throw Unavailable();
try { _root.upgrade(sc, args); }
catch (Root::Invalid_args) { throw Invalid_args(); }
catch (Root::Unavailable) { throw Unavailable(); }
catch (Root::Quota_exceeded) { throw Quota_exceeded(); }
}
void close(Session_capability sc) { _root.close(sc); }
};
/**
* Container for holding service representations
*/
class Service_registry
{
protected:
Lock _service_wait_queue_lock;
List<Client> _service_wait_queue;
List<Service> _services;
public:
/**
* Probe for service with specified name
*
* \param name service name
* \param server server providing the service,
* default (0) for any server
*/
Service *find(const char *name, Server *server = 0)
{
if (!name) return 0;
Lock::Guard lock_guard(_service_wait_queue_lock);
for (Service *s = _services.first(); s; s = s->next())
if (strcmp(s->name(), name) == 0
&& (!server || s->server() == server)) return s;
return 0;
}
/**
* Check if service name is ambiguous
*
* \return true if the same service is provided multiple
* times
*/
bool is_ambiguous(const char *name)
{
Lock::Guard lock_guard(_service_wait_queue_lock);
/* count number of services with the specified name */
unsigned cnt = 0;
for (Service *s = _services.first(); s; s = s->next())
cnt += (strcmp(s->name(), name) == 0);
return cnt > 1;
}
/**
* Return first service provided by specified server
*/
Service *find_by_server(Server *server)
{
Lock::Guard lock_guard(_service_wait_queue_lock);
for (Service *s = _services.first(); s; s = s->next())
if (s->server() == server)
return s;
return 0;
}
/**
* Wait for service
*
* This function is called by the clients's thread
* when requesting a session creation. It blocks
* if the requested service is not available.
*
* \return service structure that matches the request or
* 0 if the waiting was canceled.
*/
Service *wait_for_service(const char *name, Client *client, const char *client_name)
{
Service *service;
client->apply_for(name);
_service_wait_queue_lock.lock();
_service_wait_queue.insert(client);
_service_wait_queue_lock.unlock();
do {
service = find(name);
/*
* The service that we are seeking is not available today.
* Lets sleep a night over it.
*/
if (!service) {
printf("%s: service %s not yet available - sleeping\n",
client_name, name);
try {
client->sleep();
printf("%s: service %s got available\n", client_name, name);
} catch (Blocking_canceled) {
printf("%s: cancel waiting for service\n", client_name);
break;
}
}
} while (!service);
/* we got what we needed, stop applying */
_service_wait_queue_lock.lock();
_service_wait_queue.remove(client);
_service_wait_queue_lock.unlock();
client->apply_for(0);
return service;
}
/**
* Register service
*
* This function is called by the server's thread.
*/
void insert(Service *service)
{
/* make new service known */
_services.insert(service);
/* wake up applicants waiting for the service */
Lock::Guard lock_guard(_service_wait_queue_lock);
for (Client *c = _service_wait_queue.first(); c; c = c->next())
if (strcmp(service->name(), c->apply_for()) == 0)
c->wakeup();
}
/**
* Unregister service
*/
void remove(Service *service) { _services.remove(service); }
};
}
#endif /* _INCLUDE__BASE__SERVICE_H_ */

284
base/include/base/signal.h Normal file
View File

@@ -0,0 +1,284 @@
/*
* \brief Delivery and reception of asynchronous notifications
* \author Norman Feske
* \date 2008-09-05
*
* Each transmitter sends signals to one fixed destination.
* A receiver can receive signals from multiple sources.
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__SIGNAL_H__
#define _INCLUDE__BASE__SIGNAL_H__
#include <base/semaphore.h>
#include <signal_session/signal_session.h>
namespace Genode {
class Signal_receiver;
class Signal_context;
/**
* Signal
*
* A signal represents a number of asynchronous notifications produced by
* one transmitter. If notifications are generated at a higher rate than as
* they can be processed at the receiver, the transmitter counts the
* notifications and delivers the total amount with the next signal
* transmission. This way, the total number of notifications gets properly
* communicated to the receiver even if the receiver is not highly
* responsive.
*
* Asynchronous notifications do not carry any payload because this payload
* would need to be queued at the transmitter. However, each transmitter
* imprints a signal-context reference into each signal. This context
* can be used by the receiver to distinguish signals coming from different
* transmitters.
*/
class Signal
{
private:
friend class Signal_receiver;
friend class Signal_context;
Signal_context *_context;
int _num;
/**
* Constructor
*
* \param context signal context specific for the signal-receiver
* capability used for signal transmission
* \param num number of signals received from the same transmitter
*
* Signal objects are constructed only by signal receivers.
*/
Signal(Signal_context *context, int num)
: _context(context), _num(num)
{ }
public:
/**
* Default constructor, creating an invalid signal
*/
Signal() : _context(0), _num(0) { }
/**
* Return signal context
*/
Signal_context *context() { return _context; }
/**
* Return number of signals received from the same transmitter
*/
int num() { return _num; }
};
/**
* Signal context
*
* A signal context is a destination for signals. One receiver can listen
* to multple contexts. If a signal arrives, the context is provided with the
* signel. This enables the receiver to distinguish different signal sources
* and dispatch incoming signals context-specific.
*/
class Signal_context
{
private:
/**
* Helper class to handle a 'Signal_context' as list element
*/
struct List_element : public List<List_element>::Element {
Signal_context *context; };
/**
* List element in the receiver's context list
*/
List_element _list_element;
/**
* Receiver to which the context is associated with
*
* This member is initialized by the receiver when associating
* the context with the receiver via the 'cap' function.
*/
Signal_receiver *_receiver;
Lock _lock; /* protect '_curr_signal' */
Signal _curr_signal; /* most-currently received signal */
bool _pending; /* current signal is valid */
/**
* Capability assigned to this context after being assocated with
* a 'Signal_receiver' via the 'manage' function. We store this
* capability in the 'Signal_context' for the mere reason to
* properly destruct the context (see '_unsynchronized_dissolve').
*/
Signal_context_capability _cap;
friend class Signal_receiver;
public:
/**
* Constructor
*/
Signal_context() : _receiver(0), _pending(0) { }
/**
* Destructor
*
* The virtual destructor is just there to generate a vtable for
* signal-context objects such that signal contexts can be dynamically
* casted.
*/
virtual ~Signal_context() { }
/*
* Signal contexts are never invoked but only used as arguments for
* 'Signal_session' functions. Hence, there exists a capability
* type for it but no real RPC interface.
*/
GENODE_RPC_INTERFACE();
};
/**
* Signal transmitter
*
* Each signal-transmitter instance acts on behalf the context specified
* as constructor argument. Therefore, the resources needed for the
* transmitter such as the consumed memory 'sizeof(Signal_transmitter)'
* should be accounted to the owner of the context.
*/
class Signal_transmitter
{
private:
Signal_context_capability _context; /* destination */
public:
/**
* Constructor
*
* \param context capability to signal context that is going to
* receive signals produced by the transmitter
*/
Signal_transmitter(Signal_context_capability context = Signal_context_capability());
/**
* Set signal context
*/
void context(Signal_context_capability context);
/**
* Trigger signal submission to context
*
* \param cnt number of signals to submit at once
*/
void submit(int cnt = 1);
};
/**
* Signal receiver
*/
class Signal_receiver
{
private:
Semaphore _signal_available; /* signal(s) awaiting to be picked up */
/**
* List of associated contexts
*/
Lock _contexts_lock;
List<Signal_context::List_element> _contexts;
/**
* Helper to dissolve given context
*
* This function prevents duplicated code in '~Signal_receiver'
* and 'dissolve'. Note that '_contexts_lock' must be held when
* calling this function.
*/
void _unsynchronized_dissolve(Signal_context *context);
public:
/**
* Exception class
*/
class Context_already_in_use { };
class Context_not_associated { };
/**
* Constructor
*/
Signal_receiver();
/**
* Destructor
*/
~Signal_receiver();
/**
* Manage signal context and return new signal-context capability
*
* \param context context associated with signals delivered to the
* receiver
* \throw 'Context_already_in_use'
* \return new signal-context capability that can be
* passed to a signal transmitter
*/
Signal_context_capability manage(Signal_context *context);
/**
* Dissolve signal context from receiver
*
* \param context context to remove from receiver
* \throw 'Context_not_associated'
*/
void dissolve(Signal_context *context);
/**
* Return true if signal was received
*/
bool pending();
/**
* Block until a signal is received
*
* \return received signal
*/
Signal wait_for_signal();
/**
* Locally submit signal to the receiver
*/
void local_submit(Signal signal);
/**
* Framework-internal signal-dispatcher
*
* This function is called from the thread that monitors the signal
* source associated with the process. It must not be used for other
* purposes.
*/
static void dispatch_signals(Signal_source *signal_source);
};
}
#endif /* _INCLUDE__BASE__SIGNAL_H__ */

255
base/include/base/slab.h Normal file
View File

@@ -0,0 +1,255 @@
/*
* \brief Slab allocator
* \author Norman Feske
* \date 2006-04-18
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__SLAB_H_
#define _INCLUDE__BASE__SLAB_H_
#include <base/allocator.h>
#include <base/stdint.h>
namespace Genode {
class Slab;
class Slab_entry;
class Allocator;
/**
* A slab block holds an array of slab entries.
*/
class Slab_block
{
public:
Slab_block *next; /* next block */
Slab_block *prev; /* previous block */
private:
enum { FREE, USED };
Slab *_slab; /* back reference to slab allocator */
unsigned _avail; /* free entries of this block */
/*
* Each slab block consists of three areas, a fixed-size header
* that contains the member variables declared above, a byte array
* called state table that holds the allocation state for each slab
* entry, and an area holding the actual slab entries. The number
* of state-table elements corresponds to the maximum number of slab
* entries per slab block (the '_num_elem' member variable of the
* Slab allocator).
*/
char _data[]; /* dynamic data (state table and slab entries) */
/*
* Caution! no member variables allowed below this line!
*/
/**
* Accessor functions to allocation state
*
* \param idx index of slab entry
*/
inline bool state(int idx) { return _data[idx]; }
inline void state(int idx, bool state) { _data[idx] = state; }
/**
* Request address of slab entry by its index
*/
Slab_entry *slab_entry(int idx);
/**
* Determine block index of specified slab entry
*/
int slab_entry_idx(Slab_entry *e);
public:
/**
* Constructor
*
* Normally, Slab_blocks are constructed by a Slab allocator
* that specifies itself as constructor argument.
*/
explicit Slab_block(Slab *s = 0) { if (s) slab(s); }
/**
* Configure block to be managed by the specified slab allocator
*/
void slab(Slab *slab);
/**
* Request number of available entries in block
*/
unsigned avail() { return _avail; }
/**
* Allocate slab entry from block
*/
void *alloc();
/**
* Return a used slab block entry
*/
Slab_entry *first_used_entry();
/**
* These functions are called by Slab_entry.
*/
void inc_avail(Slab_entry *e);
void dec_avail();
/**
* Debug and test hooks
*/
void dump();
int check_bounds();
};
class Slab_entry
{
private:
Slab_block *_sb;
char _data[];
/*
* Caution! no member variables allowed below this line!
*/
public:
void init() { _sb = 0; }
void occupy(Slab_block *sb)
{
_sb = sb;
_sb->dec_avail();
}
void free()
{
_sb->inc_avail(this);
_sb = 0;
}
void *addr() { return _data; }
/**
* Lookup Slab_entry by given address
*
* The specified address is supposed to point to _data[0].
*/
static Slab_entry *slab_entry(void *addr) {
return (Slab_entry *)((addr_t)addr - sizeof(Slab_entry)); }
};
/**
* Slab allocator
*/
class Slab : public Allocator
{
private:
size_t _slab_size; /* size of one slab entry */
size_t _block_size; /* size of slab block */
size_t _num_elem; /* number of slab entries per block */
Slab_block *_first_sb; /* first slab block */
Slab_block *_initial_sb; /* initial (static) slab block */
bool _alloc_state; /* indicator for 'currently in service' */
Allocator *_backing_store;
/**
* Allocate and initialize new slab block
*/
Slab_block *_new_slab_block();
public:
inline size_t slab_size() { return _slab_size; }
inline size_t block_size() { return _block_size; }
inline size_t num_elem() { return _num_elem; }
inline size_t entry_size() { return sizeof(Slab_entry) + _slab_size; }
/**
* Constructor
*
* At construction time, there exists one initial slab
* block that is used for the first couple of allocations,
* especially for the allocation of the second slab
* block.
*/
Slab(size_t slab_size, size_t block_size, Slab_block *initial_sb,
Allocator *backing_store = 0);
/**
* Destructor
*/
~Slab();
/**
* Debug function for dumping the current slab block list
*/
void dump_sb_list();
/**
* Remove block from slab block list
*/
void remove_sb(Slab_block *sb);
/**
* Insert block into slab block list
*/
void insert_sb(Slab_block *sb, Slab_block *at = 0);
/**
* Allocate slab entry
*/
void *alloc();
/**
* Free slab entry
*/
static void free(void *addr);
/**
* Return a used slab element
*/
void *first_used_elem();
/**
* Return true if number of free slab entries is higher than n
*/
bool num_free_entries_higher_than(int n);
/**
* Define/request backing-store allocator
*/
void backing_store(Allocator *bs) { _backing_store = bs; }
Allocator *backing_store() { return _backing_store; }
/**
* Allocator interface
*/
bool alloc(size_t, void **);
void free(void *addr, size_t) { free(addr); }
size_t consumed();
size_t overhead(size_t size) { return _block_size/_num_elem; }
};
}
#endif /* _INCLUDE__BASE__SLAB_H_ */

29
base/include/base/sleep.h Normal file
View File

@@ -0,0 +1,29 @@
/*
* \brief Lay back and relax
* \author Norman Feske
* \date 2006-07-19
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__SLEEP_H_
#define _INCLUDE__BASE__SLEEP_H_
#include <base/ipc.h>
namespace Genode {
__attribute__((noreturn)) inline void sleep_forever()
{
Msgbuf<16> buf;
Ipc_server s(&buf, &buf);
while (1) s >> IPC_WAIT;
}
}
#endif /* _INCLUDE__BASE__SLEEP_H_ */

View File

@@ -0,0 +1,82 @@
/*
* \brief Facility to write format string into character buffer
* \author Norman Feske
* \date 2006-07-17
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__SNPRINTF_H_
#define _INCLUDE__BASE__SNPRINTF_H_
#include <base/console.h>
#include <base/stdint.h>
namespace Genode {
class String_console : public Console
{
private:
char *_dst;
size_t _dst_len;
size_t _w_offset;
public:
/**
* Constructor
*
* \param dst destination character buffer
* \param dst_len size of dst
*/
String_console(char *dst, size_t dst_len)
: _dst(dst), _dst_len(dst_len), _w_offset(0)
{ _dst[0] = 0; }
/**
* Return number of characters in destination buffer
*/
size_t len() { return _w_offset; }
/***********************
** Console interface **
***********************/
void _out_char(char c)
{
/* ensure to leave space for null-termination */
if (_w_offset > _dst_len - 2)
return;
_dst[_w_offset++] = c;
_dst[_w_offset] = 0;
}
};
/**
* Print format string into character buffer
*
* \return number of characters written to destination buffer
*/
inline int snprintf(char *, size_t, const char *, ...) __attribute__((format(printf, 3, 4)));
inline int snprintf(char *dst, size_t dst_len, const char *format, ...)
{
va_list list;
va_start(list, format);
String_console sc(dst, dst_len);
sc.vprintf(format, list);
va_end(list);
return sc.len();
}
}
#endif /* _INCLUDE__BASE__SNPRINTF_H_ */

View File

@@ -0,0 +1,43 @@
/*
* \brief Genode-specific integer types
* \author Christian Helmuth
* \date 2006-05-10
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__STDINT_H_
#define _INCLUDE__BASE__STDINT_H_
/* fixed-width integer types */
#include <base/fixed_stdint.h>
namespace Genode {
/**
* Integer type for non-negative size values
*/
typedef __SIZE_TYPE__ size_t;
/**
* Integer type for memory addresses
*/
typedef unsigned long addr_t;
/**
* Integer type for memory offset values
*/
typedef long off_t;
/**
* Integer type corresponding to a machine register
*/
typedef unsigned long umword_t;
}
#endif /* _INCLUDE__BASE__STDINT_H_ */

View File

@@ -0,0 +1,168 @@
/*
* \brief Lock-guarded allocator interface
* \author Norman Feske
* \date 2008-08-05
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__SYNC_ALLOCATOR_H_
#define _INCLUDE__BASE__SYNC_ALLOCATOR_H_
#include <base/allocator.h>
#include <base/lock.h>
namespace Genode {
/**
* Lock-guarded range allocator
*
* This class wraps the complete 'Range_allocator' interface while
* preventing concurrent calls to the wrapped allocator implementation.
*
* \param ALLOCATOR_IMPL class implementing the 'Range_allocator'
* interface
*/
template <typename ALLOCATOR_IMPL>
class Synchronized_range_allocator : public Range_allocator
{
private:
Lock _default_lock;
Lock *_lock;
ALLOCATOR_IMPL _alloc;
public:
/**
* Constructor
*
* This constructor uses an embedded lock for synchronizing the
* access to the allocator.
*/
Synchronized_range_allocator()
: _lock(&_default_lock) { }
/**
* Constructor
*
* This constructor uses an embedded lock for synchronizing the
* access to the allocator.
*/
explicit Synchronized_range_allocator(Allocator *metadata_alloc)
: _lock(&_default_lock), _alloc(metadata_alloc) { }
/**
* Constructor
*
* \param lock use specified lock rather then an embedded lock for
* synchronization
*
* This constructor is useful if multiple allocators must be
* synchronized with each other. In such as case, the shared
* lock can be passed to each 'Synchronized_range_allocator'
* instance.
*/
Synchronized_range_allocator(Lock *lock, Allocator *metadata_alloc)
: _lock(lock), _alloc(metadata_alloc) { }
/**
* Return reference to wrapped (non-thread-safe) allocator
*
* This is needed, for example, if the wrapped allocator implements
* methods in addition to the Range_allocator interface.
*
* NOTE: Synchronize accesses to the raw allocator by facilitating
* the lock() member function.
*/
ALLOCATOR_IMPL *raw() { return &_alloc; }
/**
* Return reference to synchronization lock
*/
Lock *lock() { return _lock; }
/*************************
** Allocator interface **
*************************/
bool alloc(size_t size, void **out_addr)
{
Lock::Guard lock_guard(*_lock);
return _alloc.alloc(size, out_addr);
}
void free(void *addr, size_t size)
{
Lock::Guard lock_guard(*_lock);
_alloc.free(addr, size);
}
size_t consumed()
{
Lock::Guard lock_guard(*_lock);
return _alloc.consumed();
}
size_t overhead(size_t size)
{
Lock::Guard lock_guard(*_lock);
return _alloc.overhead(size);
}
/*******************************
** Range-allocator interface **
*******************************/
int add_range(addr_t base, size_t size)
{
Lock::Guard lock_guard(*_lock);
return _alloc.add_range(base, size);
}
int remove_range(addr_t base, size_t size)
{
Lock::Guard lock_guard(*_lock);
return _alloc.remove_range(base, size);
}
bool alloc_aligned(size_t size, void **out_addr, int align = 0)
{
Lock::Guard lock_guard(*_lock);
return _alloc.alloc_aligned(size, out_addr, align);
}
Alloc_return alloc_addr(size_t size, addr_t addr)
{
Lock::Guard lock_guard(*_lock);
return _alloc.alloc_addr(size, addr);
}
void free(void *addr)
{
Lock::Guard lock_guard(*_lock);
_alloc.free(addr);
}
size_t avail()
{
Lock::Guard lock_guard(*_lock);
return _alloc.avail();
}
bool valid_addr(addr_t addr)
{
Lock::Guard lock_guard(*_lock);
return _alloc.valid_addr(addr);
}
};
}
#endif /* _INCLUDE__BASE__SYNC_ALLOCATOR_H_ */

367
base/include/base/thread.h Normal file
View File

@@ -0,0 +1,367 @@
/*
* \brief Thread interface
* \author Norman Feske
* \date 2006-04-28
*
* For storing thread-specific data (called thread context) such as the stack
* and thread-local data, there is a dedicated portion of the virtual address
* space. This portion is called thread-context area. Within the thread-context
* area, each thread has a fixed-sized slot, a thread context. The layout of
* each thread context looks as follows
*
* ! lower address
* ! ...
* ! ============================ <- aligned at 'CONTEXT_VIRTUAL_SIZE'
* !
* ! empty
* !
* ! ----------------------------
* !
* ! stack
* ! (top) <- initial stack pointer
* ! ---------------------------- <- address of 'Context' object
* ! additional context members
* ! ----------------------------
* ! UTCB
* ! ============================ <- aligned at 'CONTEXT_VIRTUAL_SIZE'
* ! ...
* ! higher address
*
* On some platforms, a user-level thread-control block (UTCB) area contains
* data shared between the user-level thread and the kernel. It is typically
* used for transferring IPC message payload or for system-call arguments.
* The additional context members are a reference to the corresponding
* 'Thread_base' object and the name of the thread.
*
* The thread context is a virtual memory area, initially not backed by real
* memory. When a new thread is created, an empty thread context gets assigned
* to the new thread and populated with memory pages for the stack and the
* additional context members. Note that this memory is allocated from the RAM
* session of the process environment and not accounted for when using the
* 'sizeof()' operand on a 'Thread_base' object.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__THREAD_H_
#define _INCLUDE__BASE__THREAD_H_
/* Genode includes */
#include <base/exception.h>
#include <base/lock.h>
#include <base/native_types.h>
#include <util/list.h>
#include <ram_session/ram_session.h> /* for 'Ram_dataspace_capability' type */
#include <cpu_session/cpu_session.h> /* for 'Thread_capability' type */
namespace Genode {
class Rm_session;
/**
* Concurrent control flow
*
* A 'Thread_base' object corresponds to a physical thread. The execution
* starts at the 'entry()' function as soon as 'start()' is called.
*/
class Thread_base
{
public:
class Context_alloc_failed : public Exception { };
class Stack_too_large : public Exception { };
class Stack_alloc_failed : public Exception { };
/*
* Thread-context area configuration.
*
* Please update platform-specific files after changing these
* values, e.g., 'base-linux/src/platform/context_area.*.ld'.
*/
enum { CONTEXT_AREA_VIRTUAL_BASE = 0x40000000 };
enum { CONTEXT_AREA_VIRTUAL_SIZE = 0x10000000 };
/**
* Size of virtual address region holding the context of one thread
*/
enum { CONTEXT_VIRTUAL_SIZE = 0x00100000 };
enum { CONTEXT_VIRTUAL_BASE_MASK = ~(CONTEXT_VIRTUAL_SIZE - 1) };
private:
/**
* List-element helper to enable inserting threads in a list
*/
List_element<Thread_base> _list_element;
public:
/**
* Thread context located within the thread-context area
*
* The end of a thread context is placed at a boundary aligned at
* 'CONTEXT_VIRTUAL_SIZE'.
*/
struct Context
{
/**
* Top of the stack
*/
long stack[];
/**
* Pointer to corresponding 'Thread_base' object
*/
Thread_base *thread_base;
/**
* Virtual address of the start of the stack
*
* This address is pointing to the begin of the dataspace used
* for backing the thread context except for the UTCB (which is
* managed by the kernel).
*/
addr_t stack_base;
/**
* Dataspace containing the backing store for the thread context
*
* We keep the dataspace capability to be able to release the
* backing store on thread destruction.
*/
Ram_dataspace_capability ds_cap;
/**
* Maximum length of thread name, including null-termination
*/
enum { NAME_LEN = 64 };
/**
* Thread name, used for debugging
*/
char name[NAME_LEN];
/*
* <- end of regular memory area
*
* The following part of the thread context is backed by
* kernel-managed memory. No member variables are allowed
* beyond this point.
*/
/**
* Kernel-specific user-level thread control block
*/
Native_utcb utcb;
};
private:
/**
* Manage the allocation of thread contexts
*
* There exists only one instance of this class per process.
*/
class Context_allocator
{
private:
List<List_element<Thread_base> > _threads;
Lock _threads_lock;
/**
* Detect if a context already exists at the specified address
*/
bool _is_in_use(addr_t base);
public:
/**
* Allocate thread context for specified thread
*
* \param thread thread for which to allocate the new context
* \return virtual address of new thread context, or
* 0 if the allocation failed
*/
Context *alloc(Thread_base *thread);
/**
* Release thread context
*/
void free(Thread_base *thread);
/**
* Return 'Context' object for a given base address
*/
static Context *base_to_context(addr_t base);
/**
* Return base address of context containing the specified address
*/
static addr_t addr_to_base(void *addr);
};
/**
* Return thread-context allocator
*/
static Context_allocator *_context_allocator();
/**
* Allocate and locally attach a new thread context
*/
Context *_alloc_context(size_t stack_size);
/**
* Detach and release thread context of the thread
*/
void _free_context();
/**
* Platform-specific thread-startup code
*
* On some platforms, each new thread has to perform a startup
* protocol, e.g., waiting for a message from the kernel. This hook
* function allows for the implementation of such protocols.
*/
void _thread_bootstrap();
/**
* Helper for thread startup
*/
static void _thread_start();
/**
* Hook for platform-specific constructor supplements
*/
void _init_platform_thread();
/**
* Hook for platform-specific destructor supplements
*/
void _deinit_platform_thread();
/* hook only used for microblaze kernel */
void _init_context(Context* c);
protected:
/**
* Capability for this thread (set by _start())
*
* Used if thread creation involves core's CPU service.
* Currently, this is not the case for NOVA.
*/
Genode::Thread_capability _thread_cap;
/**
* Pointer to corresponding thread context
*/
Context *_context;
/**
* Physical thread ID
*/
Native_thread _tid;
public:
/**
* Constructor
*
* \param name thread name for debugging
* \param stack_size stack size
*
* The stack for the new thread will be allocated from the RAM
* session of the process environment. A small portion of the
* stack size is internally used by the framework for storing
* thread-context information such as the thread's name (see
* 'struct Context').
*/
Thread_base(const char *name, size_t stack_size);
/**
* Destructor
*/
virtual ~Thread_base();
/**
* Entry function of the thread
*/
virtual void entry() = 0;
/**
* Start execution of the thread
*
* This function is virtual to enable the customization of threads
* used as server activation.
*/
virtual void start();
/**
* Request name of thread
*/
void name(char *dst, size_t dst_len);
/**
* Request capability of thread
*/
Genode::Thread_capability cap() const { return _thread_cap; }
/**
* Cancel currently blocking operation
*/
void cancel_blocking();
/**
* Only to be called from platform-specific code
*/
Native_thread & tid() { return _tid; }
/**
* Return top of stack
*
* \return pointer to first stack element
*/
void *stack_top() { return &_context->stack[-1]; }
/**
* Return 'Thread_base' object corresponding to the calling thread
*
* \return pointer to 'Thread_base' object, or
* 0 if the calling thread is the main thread
*/
static Thread_base *myself();
/**
* Return user-level thread control block
*
* Note that it is safe to call this function on the result of the
* 'myself' function. It handles the special case of 'myself' being
* 0 when called by the main thread.
*/
Native_utcb *utcb();
};
template <unsigned STACK_SIZE>
class Thread : public Thread_base
{
public:
/**
* Constructor
*
* \param name thread name (for debugging)
*/
explicit Thread(const char *name = "<noname>")
: Thread_base(name, STACK_SIZE) { }
};
}
#endif /* _INCLUDE__BASE__THREAD_H_ */

View File

@@ -0,0 +1,26 @@
/*
* \brief Thread state
* \author Norman Feske
* \date 2007-07-30
*
* This file contains the generic part of the thread state.
*/
/*
* Copyright (C) 2007-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__THREAD_STATE_H_
#define _INCLUDE__BASE__THREAD_STATE_H_
#include <base/cpu_state.h>
namespace Genode {
struct Thread_state : public Cpu_state { };
}
#endif /* _INCLUDE__BASE__THREAD_STATE_H_ */

35
base/include/base/tslab.h Normal file
View File

@@ -0,0 +1,35 @@
/*
* \brief Typed slab allocator
* \author Norman Feske
* \date 2006-05-17
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__BASE__TSLAB_H_
#define _INCLUDE__BASE__TSLAB_H_
#include <base/slab.h>
namespace Genode {
template <typename T, size_t BLOCK_SIZE>
class Tslab : public Slab
{
public:
Tslab(Allocator *backing_store,
Slab_block *initial_sb = 0)
: Slab(sizeof(T), BLOCK_SIZE, initial_sb, backing_store)
{ }
T *first_object() { return (T *)Slab::first_used_elem(); }
};
}
#endif /* _INCLUDE__BASE__TSLAB_H_ */

View File

@@ -0,0 +1,59 @@
/*
* \brief CAP-session interface
* \author Norman Feske
* \date 2006-06-23
*
* A 'Cap_session' is an allocator of user-level capabilities.
* User-level capabilities are used to reference server objects
* across address spaces.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CAP_SESSION__CAP_SESSION_H_
#define _INCLUDE__CAP_SESSION__CAP_SESSION_H_
#include <base/native_types.h>
#include <session/session.h>
namespace Genode {
struct Cap_session : Session
{
static const char *service_name() { return "CAP"; }
virtual ~Cap_session() { }
/**
* Allocate new unique userland capability
*
* \param ep entry point that will use this capability
*
* \return new userland capability
*/
virtual Native_capability alloc(Native_capability ep) = 0;
/**
* Free userland capability
*
* \param cap userland capability to free
*/
virtual void free(Native_capability cap) = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_alloc, Native_capability, alloc, Native_capability);
GENODE_RPC(Rpc_free, void, free, Native_capability);
GENODE_RPC_INTERFACE(Rpc_alloc, Rpc_free);
};
}
#endif /* _INCLUDE__CAP_SESSION__CAP_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief CAP-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CAP_SESSION__CAPABILITY_H_
#define _INCLUDE__CAP_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <cap_session/cap_session.h>
namespace Genode { typedef Capability<Cap_session> Cap_session_capability; }
#endif /* _INCLUDE__CAP_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,35 @@
/*
* \brief Client-side CAP session interface
* \author Norman Feske
* \date 2006-07-10
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CAP_SESSION__CLIENT_H_
#define _INCLUDE__CAP_SESSION__CLIENT_H_
#include <cap_session/capability.h>
#include <cap_session/cap_session.h>
#include <base/rpc_client.h>
namespace Genode {
struct Cap_session_client : Rpc_client<Cap_session>
{
explicit Cap_session_client(Cap_session_capability session)
: Rpc_client<Cap_session>(session) { }
Native_capability alloc(Native_capability ep) {
return call<Rpc_alloc>(ep); }
void free(Native_capability cap) { call<Rpc_free>(cap); }
};
}
#endif /* _INCLUDE__CAP_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,32 @@
/*
* \brief Connection to CAP service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CAP_SESSION__CONNECTION_H_
#define _INCLUDE__CAP_SESSION__CONNECTION_H_
#include <cap_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Cap_connection : Connection<Cap_session>, Cap_session_client
{
Cap_connection()
:
Connection<Cap_session>(session("ram_quota=4K")),
Cap_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__CAP_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief CPU-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CPU_SESSION__CAPABILITY_H_
#define _INCLUDE__CPU_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <cpu_session/cpu_session.h>
namespace Genode { typedef Capability<Cpu_session> Cpu_session_capability; }
#endif /* _INCLUDE__CPU_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,65 @@
/*
* \brief Client-side cpu session interface
* \author Christian Helmuth
* \date 2006-07-12
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CPU_SESSION__CLIENT_H_
#define _INCLUDE__CPU_SESSION__CLIENT_H_
#include <cpu_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Cpu_session_client : Rpc_client<Cpu_session>
{
explicit Cpu_session_client(Cpu_session_capability session)
: Rpc_client<Cpu_session>(session) { }
Thread_capability create_thread(Name const &name) {
return call<Rpc_create_thread>(name); }
void kill_thread(Thread_capability thread) {
call<Rpc_kill_thread>(thread); }
Thread_capability first() {
return call<Rpc_first>(); }
Thread_capability next(Thread_capability curr) {
return call<Rpc_next>(curr); }
int set_pager(Thread_capability thread, Pager_capability pager) {
return call<Rpc_set_pager>(thread, pager); }
int start(Thread_capability thread, addr_t ip, addr_t sp) {
return call<Rpc_start>(thread, ip, sp); }
void pause(Thread_capability thread) {
call<Rpc_pause>(thread); }
void resume(Thread_capability thread) {
call<Rpc_resume>(thread); }
void cancel_blocking(Thread_capability thread) {
call<Rpc_cancel_blocking>(thread); }
int state(Thread_capability thread, Thread_state *dst_state) {
return call<Rpc_state>(thread, dst_state); }
void exception_handler(Thread_capability thread, Signal_context_capability handler) {
call<Rpc_exception_handler>(thread, handler); }
void single_step(Thread_capability thread, bool enable) {
call<Rpc_single_step>(thread, enable); }
};
}
#endif /* _INCLUDE__CPU_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,42 @@
/*
* \brief Connection to CPU service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CPU_SESSION__CONNECTION_H_
#define _INCLUDE__CPU_SESSION__CONNECTION_H_
#include <cpu_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Cpu_connection : Connection<Cpu_session>, Cpu_session_client
{
enum { RAM_QUOTA = 32*1024 };
/**
* Constructor
*
* \param label initial session label
* \param priority designated priority of all threads created
* with this CPU session
*/
Cpu_connection(const char *label = "", long priority = DEFAULT_PRIORITY)
:
Connection<Cpu_session>(
session("priority=0x%lx, ram_quota=32K, label=\"%s\"",
priority, label)),
Cpu_session_client(cap()) { }
};
}
#endif /* _INCLUDE__CPU_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,230 @@
/*
* \brief CPU (processing time) manager session interface
* \author Christian Helmuth
* \date 2006-06-27
*
* :Question:
*
* Why are thread operations not methods of the thread but
* methods of the CPU session?
*
* :Answer:
*
* This enables the CPU session to impose policies on thread
* operations. These policies are based on the session
* construction arguments. If thread operations would be
* provided as thread methods, Thread would need to consult
* its container object (its CPU session) about the authorization
* of each operation and, thereby, would introduce a circular
* dependency between CPU session and Thread.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__CPU_SESSION__CPU_SESSION_H_
#define _INCLUDE__CPU_SESSION__CPU_SESSION_H_
#include <base/stdint.h>
#include <base/exception.h>
#include <base/thread_state.h>
#include <base/rpc_args.h>
#include <base/signal.h>
#include <thread/capability.h>
#include <pager/capability.h>
#include <session/session.h>
namespace Genode {
struct Cpu_session : Session
{
/*********************
** Exception types **
*********************/
class Thread_creation_failed : public Exception { };
static const char *service_name() { return "CPU"; }
enum { THREAD_NAME_LEN = 48 };
enum { PRIORITY_LIMIT = 1 << 16 };
enum { DEFAULT_PRIORITY = 0 };
typedef Rpc_in_buffer<THREAD_NAME_LEN> Name;
virtual ~Cpu_session() { }
/**
* Create a new thread
*
* \param name name for the thread
* \return capability representing the new thread
* \throw Thread_creation_failed
*/
virtual Thread_capability create_thread(Name const &name) = 0;
/**
* Kill an existing thread
*
* \param thread capability of the thread to kill
*/
virtual void kill_thread(Thread_capability thread) = 0;
/**
* Retrieve thread list of CPU session
*
* The next() function returns an invalid capability if the
* specified thread does not exists or if it is the last one
* of the CPU session.
*/
virtual Thread_capability first() = 0;
virtual Thread_capability next(Thread_capability curr) = 0;
/**
* Set paging capabilities for thread
*
* \param thread thread to configure
* \param pager capability used to propagate page faults
*/
virtual int set_pager(Thread_capability thread,
Pager_capability pager) = 0;
/**
* Modify instruction and stack pointer of thread - start the
* thread
*
* \param thread thread to start
* \param ip initial instruction pointer
* \param sp initial stack pointer
*
* \return 0 on success
*/
virtual int start(Thread_capability thread, addr_t ip, addr_t sp) = 0;
/**
* Pause the specified thread
*
* After calling this function, the execution of the thread can be
* continued by calling 'resume'.
*/
virtual void pause(Thread_capability thread) = 0;
/**
* Resume the specified thread
*/
virtual void resume(Thread_capability thread) = 0;
/**
* Cancel a currently blocking operation
*
* \param thread thread to unblock
*/
virtual void cancel_blocking(Thread_capability thread) = 0;
/**
* Return thread state
*
* \param thread thread to spy on
* \param state_dst result
*
* \return 0 on success
*/
virtual int state(Thread_capability thread,
Thread_state *state_dst) = 0;
/**
* Register signal handler for exceptions of the specified thread
*/
virtual void exception_handler(Thread_capability thread,
Signal_context_capability handler) = 0;
/**
* Enable/disable single stepping for specified thread.
*
* Since this functions is currently supported by a small number of
* platforms, we provide a default implementation
*
* \param thread thread to set into single step mode
* \param enable true = enable single-step mode; false = disable
*/
virtual void single_step(Thread_capability thread, bool enable) {}
/**
* Translate generic priority value to kernel-specific priority levels
*
* \param pf_prio_limit maximum priority used for the kernel, must
* be power of 2
* \param prio generic priority value as used by the CPU
* session interface
* \param inverse order of platform priorities, if true
* 'pf_prio_limit' corresponds to the highest
* priority, otherwise it refers to the
* lowest priority.
* \return platform-specific priority value
*/
static unsigned scale_priority(unsigned pf_prio_limit, unsigned prio,
bool inverse = true)
{
/* if no priorities are used, use the platform priority limit */
if (prio == 0) return pf_prio_limit;
/*
* Generic priority values are (0 is highest, 'PRIORITY_LIMIT'
* is lowest. On platforms where priority levels are defined
* the other way round, we have to invert the priority value.
*/
prio = inverse ? Cpu_session::PRIORITY_LIMIT - prio : prio;
/* scale value to platform priority range 0..pf_prio_limit */
return (prio*pf_prio_limit)/Cpu_session::PRIORITY_LIMIT;
}
/*********************
** RPC declaration **
*********************/
GENODE_RPC_THROW(Rpc_create_thread, Thread_capability, create_thread,
GENODE_TYPE_LIST(Thread_creation_failed), Name const &);
GENODE_RPC(Rpc_kill_thread, void, kill_thread, Thread_capability);
GENODE_RPC(Rpc_first, Thread_capability, first,);
GENODE_RPC(Rpc_next, Thread_capability, next, Thread_capability);
GENODE_RPC(Rpc_set_pager, int, set_pager, Thread_capability, Pager_capability);
GENODE_RPC(Rpc_start, int, start, Thread_capability, addr_t, addr_t);
GENODE_RPC(Rpc_pause, void, pause, Thread_capability);
GENODE_RPC(Rpc_resume, void, resume, Thread_capability);
GENODE_RPC(Rpc_cancel_blocking, void, cancel_blocking, Thread_capability);
GENODE_RPC(Rpc_state, int, state, Thread_capability, Thread_state *);
GENODE_RPC(Rpc_exception_handler, void, exception_handler,
Thread_capability, Signal_context_capability);
GENODE_RPC(Rpc_single_step, void, single_step, Thread_capability, bool);
/*
* 'GENODE_RPC_INTERFACE' declaration done manually
*
* The number of RPC function of this interface exceeds the maximum
* number of elements supported by 'Meta::Type_list'. Therefore, we
* construct the type list by hand using nested type tuples instead
* of employing the convenience macro 'GENODE_RPC_INTERFACE'.
*/
typedef Meta::Type_tuple<Rpc_create_thread,
Meta::Type_tuple<Rpc_kill_thread,
Meta::Type_tuple<Rpc_first,
Meta::Type_tuple<Rpc_next,
Meta::Type_tuple<Rpc_set_pager,
Meta::Type_tuple<Rpc_start,
Meta::Type_tuple<Rpc_pause,
Meta::Type_tuple<Rpc_resume,
Meta::Type_tuple<Rpc_cancel_blocking,
Meta::Type_tuple<Rpc_state,
Meta::Type_tuple<Rpc_exception_handler,
Meta::Type_tuple<Rpc_single_step,
Meta::Empty>
> > > > > > > > > > > Rpc_functions;
};
}
#endif /* _INCLUDE__CPU_SESSION__CPU_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief Dataspace capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__DATASPACE__CAPABILITY_H_
#define _INCLUDE__DATASPACE__CAPABILITY_H_
#include <base/capability.h>
#include <dataspace/dataspace.h>
namespace Genode { typedef Capability<Dataspace> Dataspace_capability; }
#endif /* _INCLUDE__DATASPACE__CAPABILITY_H_ */

View File

@@ -0,0 +1,33 @@
/*
* \brief Dataspace client interface
* \author Norman Feske
* \date 2006-05-11
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__DATASPACE__CLIENT_H_
#define _INCLUDE__DATASPACE__CLIENT_H_
#include <dataspace/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Dataspace_client : Rpc_client<Dataspace>
{
explicit Dataspace_client(Dataspace_capability ds)
: Rpc_client<Dataspace>(ds) { }
size_t size() { return call<Rpc_size>(); }
addr_t phys_addr() { return call<Rpc_phys_addr>(); }
bool writable() { return call<Rpc_writable>(); }
};
}
#endif /* _INCLUDE__DATASPACE__CLIENT_H_ */

View File

@@ -0,0 +1,54 @@
/*
* \brief Dataspace interface
* \author Norman Feske
* \date 2006-07-05
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__DATASPACE__DATASPACE_H_
#define _INCLUDE__DATASPACE__DATASPACE_H_
#include <base/stdint.h>
#include <base/rpc.h>
namespace Genode {
struct Dataspace
{
virtual ~Dataspace() { }
/**
* Request size of dataspace
*/
virtual size_t size() = 0;
/**
* Request base address in physical address space
*/
virtual addr_t phys_addr() = 0;
/**
* Return true if dataspace is writable
*/
virtual bool writable() = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_size, size_t, size);
GENODE_RPC(Rpc_phys_addr, addr_t, phys_addr);
GENODE_RPC(Rpc_writable, bool, writable);
GENODE_RPC_INTERFACE(Rpc_size, Rpc_phys_addr, Rpc_writable);
};
}
#endif /* _INCLUDE__DATASPACE__DATASPACE_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief I/O-memory session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_MEM_SESSION__CAPABILITY_H_
#define _INCLUDE__IO_MEM_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <io_mem_session/io_mem_session.h>
namespace Genode { typedef Capability<Io_mem_session> Io_mem_session_capability; }
#endif /* _INCLUDE__IO_MEM_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,31 @@
/*
* \brief Client-side I/O-memory session interface
* \author Christian Helmuth
* \date 2006-08-01
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_MEM_SESSION__CLIENT_H_
#define _INCLUDE__IO_MEM_SESSION__CLIENT_H_
#include <io_mem_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Io_mem_session_client : Rpc_client<Io_mem_session>
{
explicit Io_mem_session_client(Io_mem_session_capability session)
: Rpc_client<Io_mem_session>(session) { }
Io_mem_dataspace_capability dataspace() { return call<Rpc_dataspace>(); }
};
}
#endif /* _INCLUDE__IO_MEM_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,42 @@
/*
* \brief Connection to I/O-memory service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_MEM_SESSION__CONNECTION_H_
#define _INCLUDE__IO_MEM_SESSION__CONNECTION_H_
#include <io_mem_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Io_mem_connection : Connection<Io_mem_session>, Io_mem_session_client
{
/**
* Constructor
*
* \param base physical base address of memory-mapped I/O resource
* \param size size memory-mapped I/O resource
* \param write_combined enable write-combined access to I/O memory
*/
Io_mem_connection(addr_t base, size_t size, bool write_combined = false)
:
Connection<Io_mem_session>(
session("ram_quota=4K, base=0x%p, size=0x%zx, wc=%s",
base, size, write_combined ? "yes" : "no")),
Io_mem_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__IO_MEM_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,51 @@
/*
* \brief I/O-memory session interface
* \author Christian Helmuth
* \date 2006-08-01
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_MEM_SESSION__IO_MEM_SESSION_H_
#define _INCLUDE__IO_MEM_SESSION__IO_MEM_SESSION_H_
#include <dataspace/capability.h>
#include <session/session.h>
namespace Genode {
struct Io_mem_dataspace : Dataspace { };
typedef Capability<Io_mem_dataspace> Io_mem_dataspace_capability;
struct Io_mem_session : Session
{
static const char *service_name() { return "IO_MEM"; }
virtual ~Io_mem_session() { }
/**
* Request dataspace containing the IO_MEM session data
*
* \return capability to IO_MEM dataspace
* (may be invalid)
*/
virtual Io_mem_dataspace_capability dataspace() = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_dataspace, Io_mem_dataspace_capability, dataspace);
GENODE_RPC_INTERFACE(Rpc_dataspace);
};
}
#endif /* _INCLUDE__IO_MEM_SESSION__IO_MEM_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief I/O-port session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_PORT_SESSION__CAPABILITY_H_
#define _INCLUDE__IO_PORT_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <io_port_session/io_port_session.h>
namespace Genode { typedef Capability<Io_port_session> Io_port_session_capability; }
#endif /* _INCLUDE__IO_PORT_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,47 @@
/*
* \brief Client-side I/O-port session interface
* \author Christian Helmuth
* \date 2007-04-17
*/
/*
* Copyright (C) 2007-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_PORT_SESSION__CLIENT_H_
#define _INCLUDE__IO_PORT_SESSION__CLIENT_H_
#include <io_port_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Io_port_session_client : Rpc_client<Io_port_session>
{
explicit Io_port_session_client(Io_port_session_capability session)
: Rpc_client<Io_port_session>(session) { }
unsigned char inb(unsigned short address) {
return call<Rpc_inb>(address); }
unsigned short inw(unsigned short address) {
return call<Rpc_inw>(address); }
unsigned inl(unsigned short address) {
return call<Rpc_inl>(address); }
void outb(unsigned short address, unsigned char value) {
call<Rpc_outb>(address, value); }
void outw(unsigned short address, unsigned short value) {
call<Rpc_outw>(address, value); }
void outl(unsigned short address, unsigned value) {
call<Rpc_outl>(address, value); }
};
}
#endif /* _INCLUDE__IO_PORT_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,42 @@
/*
* \brief Connection to I/O-port service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_PORT_SESSION__CONNECTION_H_
#define _INCLUDE__IO_PORT_SESSION__CONNECTION_H_
#include <io_port_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Io_port_connection : Connection<Io_port_session>,
Io_port_session_client
{
/**
* Constructor
*
* \param base base address of port range
* \param size size of port range
*/
Io_port_connection(unsigned base, unsigned size)
:
Connection<Io_port_session>(
session("ram_quota=4K, io_port_base=%u, io_port_size=%u",
base, size)),
Io_port_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__IO_PORT_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,116 @@
/*
* \brief I/O-port session interface
* \author Christian Helmuth
* \date 2007-04-17
*
* An I/O port session permits access to a range of ports. Inside this range
* variable-sized accesses (i.e., 8, 16, 32 bit) at arbitrary addresses are
* allowed - currently, alignment is not enforced. Core enforces that access is
* limited to the session-defined range while the user provides physical I/O port
* addresses as function parameters.
*
* The design is founded on experiences while programming PCI configuration
* space which needs two 32-bit port registers. Each byte, word and dword in
* the data register must be explicitly accessible for read and write. The old
* design needs six capabilities only for the data register.
*/
/*
* Copyright (C) 2007-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IO_PORT_SESSION__IO_PORT_SESSION_H_
#define _INCLUDE__IO_PORT_SESSION__IO_PORT_SESSION_H_
#include <base/capability.h>
#include <session/session.h>
namespace Genode {
struct Io_port_session : Session
{
static const char *service_name() { return "IO_PORT"; }
virtual ~Io_port_session() { }
/******************************
** Read value from I/O port **
******************************/
/**
* Read byte (8 bit)
*
* \param address physical I/O port address
*
* \return value read from port
*/
virtual unsigned char inb(unsigned short address) = 0;
/**
* Read word (16 bit)
*
* \param address physical I/O port address
*
* \return value read from port
*/
virtual unsigned short inw(unsigned short address) = 0;
/**
* Read double word (32 bit)
*
* \param address physical I/O port address
*
* \return value read from port
*/
virtual unsigned inl(unsigned short address) = 0;
/*****************************
** Write value to I/O port **
*****************************/
/**
* Write byte (8 bit)
*
* \param address physical I/O port address
* \param value value to write to port
*/
virtual void outb(unsigned short address, unsigned char value) = 0;
/**
* Write word (16 bit)
*
* \param address physical I/O port address
* \param value value to write to port
*/
virtual void outw(unsigned short address, unsigned short value) = 0;
/**
* Write double word (32 bit)
*
* \param address physical I/O port address
* \param value value to write to port
*/
virtual void outl(unsigned short address, unsigned value) = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_inb, unsigned char, inb, unsigned short);
GENODE_RPC(Rpc_inw, unsigned short, inw, unsigned short);
GENODE_RPC(Rpc_inl, unsigned, inl, unsigned short);
GENODE_RPC(Rpc_outb, void, outb, unsigned short, unsigned char);
GENODE_RPC(Rpc_outw, void, outw, unsigned short, unsigned short);
GENODE_RPC(Rpc_outl, void, outl, unsigned short, unsigned);
GENODE_RPC_INTERFACE(Rpc_inb, Rpc_inw, Rpc_inl, Rpc_outb, Rpc_outw, Rpc_outl);
};
}
#endif /* _INCLUDE__IO_PORT_SESSION__IO_PORT_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief IRQ-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IRQ_SESSION__CAPABILITY_H_
#define _INCLUDE__IRQ_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <irq_session/irq_session.h>
namespace Genode { typedef Capability<Irq_session> Irq_session_capability; }
#endif /* _INCLUDE__IRQ_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,31 @@
/*
* \brief Client-side IRQ session interface
* \author Christian Helmuth
* \date 2007-09-13
*/
/*
* Copyright (C) 2007-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IRQ_SESSION__CLIENT_H_
#define _INCLUDE__IRQ_SESSION__CLIENT_H_
#include <irq_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Irq_session_client : Rpc_client<Irq_session>
{
explicit Irq_session_client(Irq_session_capability session)
: Rpc_client<Irq_session>(session) { }
void wait_for_irq() { call<Rpc_wait_for_irq>(); }
};
}
#endif /* _INCLUDE__IRQ_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,39 @@
/*
* \brief Connection to IRQ service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IRQ_SESSION__CONNECTION_H_
#define _INCLUDE__IRQ_SESSION__CONNECTION_H_
#include <irq_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Irq_connection : Connection<Irq_session>, Irq_session_client
{
/**
* Constructor
*
* \param irq physical interrupt number
*/
Irq_connection(unsigned irq)
:
Connection<Irq_session>(
session("ram_quota=4K, irq_number=%u", irq)),
Irq_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__IRQ_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,47 @@
/*
* \brief IRQ session interface
* \author Christian Helmuth
* \date 2007-09-13
*
* An open IRQ session represents a valid IRQ attachment/association.
* Initially, the interrupt is masked and will only occur if enabled. This is
* done by calling wait_for_irq(). When the interrupt is delivered to the
* client, it was acknowledged and masked at the interrupt controller before.
*
* Disassociation from an IRQ is done by closing the session.
*/
/*
* Copyright (C) 2007-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__IRQ_SESSION__IRQ_SESSION_H_
#define _INCLUDE__IRQ_SESSION__IRQ_SESSION_H_
#include <base/capability.h>
#include <session/session.h>
namespace Genode {
struct Irq_session : Session
{
static const char *service_name() { return "IRQ"; }
virtual ~Irq_session() { }
virtual void wait_for_irq() = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_wait_for_irq, void, wait_for_irq);
GENODE_RPC_INTERFACE(Rpc_wait_for_irq);
};
}
#endif /* _INCLUDE__IRQ_SESSION__IRQ_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief LOG-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__LOG_SESSION__CAPABILITY_H_
#define _INCLUDE__LOG_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <log_session/log_session.h>
namespace Genode { typedef Capability<Log_session> Log_session_capability; }
#endif /* _INCLUDE__LOG_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,32 @@
/*
* \brief Client-side log text output session interface
* \author Norman Feske
* \date 2006-09-15
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__LOG_SESSION__CLIENT_H_
#define _INCLUDE__LOG_SESSION__CLIENT_H_
#include <log_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Log_session_client : Rpc_client<Log_session>
{
explicit Log_session_client(Log_session_capability session)
: Rpc_client<Log_session>(session) { }
size_t write(String const &string) {
return call<Rpc_write>(string); }
};
}
#endif /* _INCLUDE__LOG_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,32 @@
/*
* \brief Connection to LOG service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__LOG_SESSION__CONNECTION_H_
#define _INCLUDE__LOG_SESSION__CONNECTION_H_
#include <log_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Log_connection : Connection<Log_session>, Log_session_client
{
Log_connection()
:
Connection<Log_session>(session("ram_quota=8K")),
Log_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__LOG_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,49 @@
/*
* \brief Log text output session interface
* \author Norman Feske
* \date 2006-09-15
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__LOG_SESSION__LOG_SESSION_H_
#define _INCLUDE__LOG_SESSION__LOG_SESSION_H_
#include <base/capability.h>
#include <base/stdint.h>
#include <base/rpc_args.h>
#include <session/session.h>
namespace Genode {
struct Log_session : Session
{
static const char *service_name() { return "LOG"; }
virtual ~Log_session() { }
typedef Rpc_in_buffer<256> String;
/**
* Output null-terminated string
*
* \return number of written characters
*/
virtual size_t write(String const &string) = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_write, size_t, write, String const &);
GENODE_RPC_INTERFACE(Rpc_write);
};
}
#endif /* _INCLUDE__LOG_SESSION__LOG_SESSION_H_ */

View File

@@ -0,0 +1,30 @@
/*
* \brief Pager capability type
* \author Norman Feske
* \date 2010-01-27
*/
/*
* Copyright (C) 2010-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PAGER__CAPABILITY_H_
#define _INCLUDE__PAGER__CAPABILITY_H_
#include <base/capability.h>
namespace Genode {
/*
* The 'Pager_capability' type is returned by 'Rm_session::add_client' and
* passed as argument to 'Cpu_session::set_pager'. It is never invoked or
* otherwise used.
*/
class Pager_object;
typedef Capability<Pager_object> Pager_capability;
}
#endif /* _INCLUDE__PAGER__CAPABILITY_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief Parent capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PARENT__CAPABILITY_H_
#define _INCLUDE__PARENT__CAPABILITY_H_
#include <base/capability.h>
#include <parent/parent.h>
namespace Genode { typedef Capability<Parent> Parent_capability; }
#endif /* _INCLUDE__PARENT__CAPABILITY_H_ */

View File

@@ -0,0 +1,43 @@
/*
* \brief Client-side parent interface
* \author Norman Feske
* \date 2006-05-10
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PARENT__CLIENT_H_
#define _INCLUDE__PARENT__CLIENT_H_
#include <parent/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Parent_client : Rpc_client<Parent>
{
explicit Parent_client(Parent_capability parent)
: Rpc_client<Parent>(parent) { }
void exit(int exit_value) { call<Rpc_exit>(exit_value); }
void announce(Service_name const &service, Root_capability root) {
call<Rpc_announce>(service, root); }
Session_capability session(Service_name const &service,
Session_args const &args) {
return call<Rpc_session>(service, args); }
void upgrade(Session_capability to_session, Upgrade_args const &args) {
call<Rpc_upgrade>(to_session, args); }
void close(Session_capability session) { call<Rpc_close>(session); }
};
}
#endif /* _INCLUDE__PARENT__CLIENT_H_ */

View File

@@ -0,0 +1,152 @@
/*
* \brief Parent interface
* \author Norman Feske
* \date 2006-05-10
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PARENT__PARENT_H_
#define _INCLUDE__PARENT__PARENT_H_
#include <base/exception.h>
#include <base/rpc.h>
#include <base/rpc_args.h>
#include <session/capability.h>
#include <root/capability.h>
namespace Genode {
struct Parent
{
/*********************
** Exception types **
*********************/
class Exception : public ::Genode::Exception { };
class Service_denied : public Exception { };
class Quota_exceeded : public Exception { };
class Unavailable : public Exception { };
typedef Rpc_in_buffer<64> Service_name;
typedef Rpc_in_buffer<160> Session_args;
typedef Rpc_in_buffer<160> Upgrade_args;
virtual ~Parent() { }
/**
* Tell parent to exit the program
*/
virtual void exit(int exit_value) = 0;
/**
* Announce service to the parent
*/
virtual void announce(Service_name const &service_name,
Root_capability service_root) = 0;
/**
* Announce service to the parent
*
* \param service_root root capability
*
* The type of the specified 'service_root' capability match with
* an interface that provides a 'Session_type' type (i.e., a
* 'Typed_root' interface). This 'Session_type' is expected to
* host a static function called 'service_name' returning the
* name of the provided interface as null-terminated string.
*/
template <typename ROOT_INTERFACE>
void announce(Capability<ROOT_INTERFACE> const &service_root)
{
announce(ROOT_INTERFACE::Session_type::service_name(), service_root);
}
/**
* Create session to a service
*
* \param service_name name of the requested interface
* \param args session constructor arguments
*
* \throw Service_denied parent denies session request
* \throw Quota_exceeded our own quota does not suffice for
* the creation of the new session
* \throw Unavailable
*
* \return untyped capability to new session
*
* The use of this function is discouraged. Please use the type safe
* 'session()' template instead.
*/
virtual Session_capability session(Service_name const &service_name,
Session_args const &args) = 0;
/**
* Create session to a service
*
* \param SESSION_TYPE session interface type
* \param args session constructor arguments
*
* \throw Service_denied parent denies session request
* \throw Quota_exceeded our own quota does not suffice for
* the creation of the new session
* \throw Unavailable
*
* \return capability to new session
*/
template <typename SESSION_TYPE>
Capability<SESSION_TYPE> session(Session_args const &args)
{
Session_capability cap = session(SESSION_TYPE::service_name(), args);
return reinterpret_cap_cast<SESSION_TYPE>(cap);
}
/**
* Transfer our quota to the server that provides the specified session
*
* \param to_session recipient session
* \param args description of the amount of quota to transfer
*
* \throw Quota_exceeded quota could not be transferred
*
* The 'args' argument has the same principle format as the 'args'
* argument of the 'session' function.
* The error case indicates that there is not enough unused quota on
* the source side.
*/
virtual void upgrade(Session_capability to_session,
Upgrade_args const &args) = 0;
/**
* Close session
*/
virtual void close(Session_capability session) = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_exit, void, exit, int);
GENODE_RPC(Rpc_announce, void, announce,
Service_name const &, Root_capability);
GENODE_RPC_THROW(Rpc_session, Session_capability, session,
GENODE_TYPE_LIST(Service_denied, Quota_exceeded, Unavailable),
Service_name const &, Session_args const &);
GENODE_RPC_THROW(Rpc_upgrade, void, upgrade,
GENODE_TYPE_LIST(Quota_exceeded),
Session_capability, Upgrade_args const &);
GENODE_RPC(Rpc_close, void, close, Session_capability);
GENODE_RPC_INTERFACE(Rpc_exit, Rpc_announce, Rpc_session, Rpc_upgrade,
Rpc_close);
};
}
#endif /* _INCLUDE__PARENT__PARENT_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief PD-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PD_SESSION__CAPABILITY_H_
#define _INCLUDE__PD_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <pd_session/pd_session.h>
namespace Genode { typedef Capability<Pd_session> Pd_session_capability; }
#endif /* _INCLUDE__PD_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,35 @@
/*
* \brief Client-side pd session interface
* \author Christian Helmuth
* \date 2006-07-12
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PD_SESSION__CLIENT_H_
#define _INCLUDE__PD_SESSION__CLIENT_H_
#include <pd_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Pd_session_client : Rpc_client<Pd_session>
{
explicit Pd_session_client(Pd_session_capability session)
: Rpc_client<Pd_session>(session) { }
int bind_thread(Thread_capability thread) {
return call<Rpc_bind_thread>(thread); }
int assign_parent(Parent_capability parent) {
return call<Rpc_assign_parent>(parent); }
};
}
#endif /* _INCLUDE__PD_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,41 @@
/*
* \brief Connection to PD service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PD_SESSION__CONNECTION_H_
#define _INCLUDE__PD_SESSION__CONNECTION_H_
#include <pd_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Pd_connection : Connection<Pd_session>, Pd_session_client
{
/**
* Constructor
*
* \param args additional session arguments
*/
Pd_connection(const char *args = 0)
:
Connection<Pd_session>(
session("ram_quota=4K%s%s",
args ? ", " : "",
args ? args : "")),
Pd_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__PD_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,63 @@
/*
* \brief Protection domain (PD) session interface
* \author Christian Helmuth
* \date 2006-06-27
*
* A pd session represents the protection domain of a program.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__PD_SESSION__PD_SESSION_H_
#define _INCLUDE__PD_SESSION__PD_SESSION_H_
#include <thread/capability.h>
#include <parent/capability.h>
#include <session/session.h>
namespace Genode {
struct Pd_session : Session
{
static const char *service_name() { return "PD"; }
virtual ~Pd_session() { }
/**
* Bind thread to protection domain
*
* \param thread capability of thread to bind
*
* \return 0 on success or negative error code
*
* After successful bind, the thread will execute inside this
* protection domain when started.
*/
virtual int bind_thread(Thread_capability thread) = 0;
/**
* Assign parent to protection domain
*
* \param parent capability of parent interface
* \return 0 on success, or negative error code
*/
virtual int assign_parent(Parent_capability parent) = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_bind_thread, int, bind_thread, Thread_capability);
GENODE_RPC(Rpc_assign_parent, int, assign_parent, Parent_capability);
GENODE_RPC_INTERFACE(Rpc_bind_thread, Rpc_assign_parent);
};
}
#endif /* _INCLUDE__PD_SESSION__PD_SESSION_H_ */

View File

@@ -0,0 +1,29 @@
/*
* \brief RAM-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RAM_SESSION__CAPABILITY_H_
#define _INCLUDE__RAM_SESSION__CAPABILITY_H_
#include <base/capability.h>
namespace Genode {
/*
* We cannot include 'ram_session/ram_session.h' because this file relies
* on the the 'Ram_session_capability' type.
*/
class Ram_session;
typedef Capability<Ram_session> Ram_session_capability;
}
#endif /* _INCLUDE__RAM_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,45 @@
/*
* \brief Client-side ram session interface
* \author Norman Feske
* \date 2006-05-31
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RAM_SESSION__CLIENT_H_
#define _INCLUDE__RAM_SESSION__CLIENT_H_
#include <ram_session/capability.h>
#include <ram_session/ram_session.h>
#include <base/rpc_client.h>
namespace Genode {
struct Ram_session_client : Rpc_client<Ram_session>
{
explicit Ram_session_client(Ram_session_capability session)
: Rpc_client<Ram_session>(session) { }
Ram_dataspace_capability alloc(size_t size) {
return call<Rpc_alloc>(size); }
void free(Ram_dataspace_capability ds) { call<Rpc_free>(ds); }
int ref_account(Ram_session_capability ram_session) {
return call<Rpc_ref_account>(ram_session); }
int transfer_quota(Ram_session_capability ram_session, size_t amount) {
return call<Rpc_transfer_quota>(ram_session, amount); }
size_t quota() { return call<Rpc_quota>(); }
size_t used() { return call<Rpc_used>(); }
};
}
#endif /* _INCLUDE__RAM_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,40 @@
/*
* \brief Connection to RAM service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RAM_SESSION__CONNECTION_H_
#define _INCLUDE__RAM_SESSION__CONNECTION_H_
#include <ram_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Ram_connection : Connection<Ram_session>, Ram_session_client
{
enum { RAM_QUOTA = 64*1024 };
/**
* Constructor
*
* \param label session label
*/
Ram_connection(const char *label = "")
:
Connection<Ram_session>(
session("ram_quota=64K, label=\"%s\"", label)),
Ram_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__RAM_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,127 @@
/*
* \brief RAM session interface
* \author Norman Feske
* \date 2006-05-11
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RAM_SESSION__RAM_SESSION_H_
#define _INCLUDE__RAM_SESSION__RAM_SESSION_H_
#include <base/stdint.h>
#include <base/capability.h>
#include <base/exception.h>
#include <dataspace/capability.h>
#include <ram_session/capability.h>
#include <session/session.h>
namespace Genode {
struct Ram_dataspace : Dataspace { };
typedef Capability<Ram_dataspace> Ram_dataspace_capability;
struct Ram_session : Session
{
static const char *service_name() { return "RAM"; }
/*********************
** Exception types **
*********************/
class Alloc_failed : public Exception { };
class Quota_exceeded : public Alloc_failed { };
class Out_of_metadata : public Alloc_failed { };
/**
* Destructor
*/
virtual ~Ram_session() { }
/**
* Allocate RAM dataspace
*
* \param size size of RAM dataspace
*
* \throw Quota_exceeded
* \throw Out_of_metadata
* \return capability to new RAM dataspace
*/
virtual Ram_dataspace_capability alloc(size_t size) = 0;
/**
* Free RAM dataspace
*
* \param ds dataspace capability as returned by alloc
*/
virtual void free(Ram_dataspace_capability ds) = 0;
/**
* Define reference account for the RAM session
*
* \param ram_session reference account
*
* \return 0 on success
*
* Each RAM session requires another RAM session as reference
* account to transfer quota to and from. The reference account can
* be defined only once.
*/
virtual int ref_account(Ram_session_capability ram_session) = 0;
/**
* Transfer quota the another ram session
*
* \param ram_session receiver of quota donation
* \param amount amount of quota to donate
* \return 0 on success
*
* Quota can only be transfered if the specified RAM session is
* either the reference account for this session or vice versa.
*/
virtual int transfer_quota(Ram_session_capability ram_session, size_t amount) = 0;
/**
* Return current quota limit
*/
virtual size_t quota() = 0;
/**
* Return used quota
*/
virtual size_t used() = 0;
/**
* Return amount of available quota
*/
size_t avail()
{
size_t q = quota(), u = used();
return q > u ? q - u : 0;
}
/*********************
** RPC declaration **
*********************/
GENODE_RPC_THROW(Rpc_alloc, Ram_dataspace_capability, alloc,
GENODE_TYPE_LIST(Quota_exceeded, Out_of_metadata), size_t);
GENODE_RPC(Rpc_free, void, free, Ram_dataspace_capability);
GENODE_RPC(Rpc_ref_account, int, ref_account, Ram_session_capability);
GENODE_RPC(Rpc_transfer_quota, int, transfer_quota, Ram_session_capability, size_t);
GENODE_RPC(Rpc_quota, size_t, quota);
GENODE_RPC(Rpc_used, size_t, used);
GENODE_RPC_INTERFACE(Rpc_alloc, Rpc_free, Rpc_ref_account,
Rpc_transfer_quota, Rpc_quota, Rpc_used);
};
}
#endif /* _INCLUDE__RAM_SESSION__RAM_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief RM-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RM_SESSION__CAPABILITY_H_
#define _INCLUDE__RM_SESSION__CAPABILITY_H_
#include <rm_session/rm_session.h>
#include <base/capability.h>
namespace Genode { typedef Capability<Rm_session> Rm_session_capability; }
#endif /* _INCLUDE__RM_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,51 @@
/*
* \brief Client-side region manager session interface
* \author Christian Helmuth
* \date 2006-07-11
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RM_SESSION__CLIENT_H_
#define _INCLUDE__RM_SESSION__CLIENT_H_
#include <rm_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Rm_session_client : Rpc_client<Rm_session>
{
explicit Rm_session_client(Rm_session_capability session)
: Rpc_client<Rm_session>(session) { }
Local_addr attach(Dataspace_capability ds, size_t size, off_t offset,
bool use_local_addr, Local_addr local_addr)
{
return call<Rpc_attach>(ds, size, offset,
use_local_addr, local_addr);
}
void detach(Local_addr local_addr) {
call<Rpc_detach>(local_addr); }
Pager_capability add_client(Thread_capability thread) {
return call<Rpc_add_client>(thread); }
void fault_handler(Signal_context_capability handler) {
call<Rpc_fault_handler>(handler); }
State state() {
return call<Rpc_state>(); }
Dataspace_capability dataspace() {
return call<Rpc_dataspace>(); }
};
}
#endif /* _INCLUDE__RM_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,40 @@
/*
* \brief Connection to RM service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RM_SESSION__CONNECTION_H_
#define _INCLUDE__RM_SESSION__CONNECTION_H_
#include <rm_session/client.h>
#include <base/connection.h>
namespace Genode {
struct Rm_connection : Connection<Rm_session>, Rm_session_client
{
enum { RAM_QUOTA = 64*1024 };
/**
* Constructor
*
* \param start start of the managed VM-region
* \param size size of the VM-region to manage
*/
Rm_connection(addr_t start = ~0UL, size_t size = 0) :
Connection<Rm_session>(
session("ram_quota=64K, start=0x%p, size=0x%zx",
start, size)),
Rm_session_client(cap()) { }
};
}
#endif /* _INCLUDE__RM_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,196 @@
/*
* \brief Region manager session interface
* \author Norman Feske
* \date 2006-05-15
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__RM_SESSION__RM_SESSION_H_
#define _INCLUDE__RM_SESSION__RM_SESSION_H_
#include <base/exception.h>
#include <base/stdint.h>
#include <base/signal.h>
#include <dataspace/capability.h>
#include <thread/capability.h>
#include <pager/capability.h>
#include <session/session.h>
namespace Genode {
struct Rm_session : Session
{
enum Fault_type {
READY = 0, READ_FAULT = 1, WRITE_FAULT = 2, EXEC_FAULT = 3 };
/**
* State of region-manager session
*
* If a client accesses a location outside the regions attached to
* the region-manager session, a fault occurs and gets signalled to
* the registered fault handler. The fault handler, in turn needs
* the information about the fault address and fault type to
* resolve the fault. This information is represented by this
* structure.
*/
struct State
{
/**
* Type of occurred fault
*/
Fault_type type;
/**
* Fault address
*/
addr_t addr;
/**
* Default constructor
*/
State() : type(READY), addr(0) { }
/**
* Constructor
*/
State(Fault_type fault_type, addr_t fault_addr) :
type(fault_type), addr(fault_addr) { }
};
/**
* Helper for tranferring the bit representation of a pointer as RPC
* argument.
*/
class Local_addr
{
private:
void *_ptr;
public:
template <typename T>
Local_addr(T ptr) : _ptr((void *)ptr) { }
Local_addr() : _ptr(0) { }
template <typename T>
operator T () { return (T)_ptr; }
};
static const char *service_name() { return "RM"; }
/*********************
** Exception types **
*********************/
class Attach_failed : public Exception { };
class Invalid_args : public Attach_failed { };
class Invalid_dataspace : public Attach_failed { };
class Region_conflict : public Attach_failed { };
class Out_of_metadata : public Attach_failed { };
class Invalid_thread : public Exception { };
class Out_of_memory : public Exception { };
/**
* Destructor
*/
virtual ~Rm_session() { }
/**
* Map dataspace into local address space
*
* \param ds capability of dataspace to map
* \param size size of the locally mapped region
* default (0) is the whole dataspace
* \param offset start at offset in dataspace (page-aligned)
* \param use_local_addr if set to true, attach the dataspace at
* the specified 'local_addr'
* \param local_addr local destination address
*
* \throw Attach_failed if dataspace or offset is invalid,
* or on region conflict
* \throw Out_of_metadata if meta-data backing store is exhausted
*
* \return local address of mapped dataspace
*
*/
virtual Local_addr attach(Dataspace_capability ds,
size_t size = 0, off_t offset = 0,
bool use_local_addr = false,
Local_addr local_addr = (addr_t)0) = 0;
/**
* Shortcut for attaching a dataspace at a predefined local address
*/
Local_addr attach_at(Dataspace_capability ds, addr_t local_addr,
size_t size = 0, off_t offset = 0) {
return attach(ds, size, offset, true, local_addr); }
/**
* Remove region from local address space
*/
virtual void detach(Local_addr local_addr) = 0;
/**
* Add client to pager
*
* \param thread thread that will be paged
* \throw Invalid_thread
* \throw Out_of_memory
* \return capability to be used for handling page faults
*
* This method must be called at least once to establish a valid
* communication channel between the pager part of the region manager
* and the client thread.
*/
virtual Pager_capability add_client(Thread_capability thread) = 0;
/**
* Register signal handler for region-manager faults
*/
virtual void fault_handler(Signal_context_capability handler) = 0;
/**
* Request current state of RM session
*/
virtual State state() = 0;
/**
* Return dataspace representation of region-manager session
*/
virtual Dataspace_capability dataspace() = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC_THROW(Rpc_attach, Local_addr, attach,
GENODE_TYPE_LIST(Invalid_dataspace, Region_conflict,
Out_of_metadata, Invalid_args),
Dataspace_capability, size_t, off_t, bool, Local_addr);
GENODE_RPC(Rpc_detach, void, detach, Local_addr);
GENODE_RPC_THROW(Rpc_add_client, Pager_capability, add_client,
GENODE_TYPE_LIST(Invalid_thread, Out_of_memory),
Thread_capability);
GENODE_RPC(Rpc_fault_handler, void, fault_handler, Signal_context_capability);
GENODE_RPC(Rpc_state, State, state);
GENODE_RPC(Rpc_dataspace, Dataspace_capability, dataspace);
GENODE_RPC_INTERFACE(Rpc_attach, Rpc_detach, Rpc_add_client,
Rpc_fault_handler, Rpc_state, Rpc_dataspace);
};
}
#endif /* _INCLUDE__RM_SESSION__RM_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief ROM-session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROM_SESSION__CAPABILITY_H_
#define _INCLUDE__ROM_SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <rom_session/rom_session.h>
namespace Genode { typedef Capability<Rom_session> Rom_session_capability; }
#endif /* _INCLUDE__ROM_SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,32 @@
/*
* \brief Client-side ROM session interface
* \author Norman Feske
* \date 2006-07-06
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROM_SESSION__CLIENT_H_
#define _INCLUDE__ROM_SESSION__CLIENT_H_
#include <rom_session/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Rom_session_client : Rpc_client<Rom_session>
{
explicit Rom_session_client(Rom_session_capability session)
: Rpc_client<Rom_session>(session) { }
Rom_dataspace_capability dataspace() {
return call<Rpc_dataspace>(); }
};
}
#endif /* _INCLUDE__ROM_SESSION__CLIENT_H_ */

View File

@@ -0,0 +1,60 @@
/*
* \brief Connection to ROM file service
* \author Norman Feske
* \date 2008-08-22
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROM_SESSION__CONNECTION_H_
#define _INCLUDE__ROM_SESSION__CONNECTION_H_
#include <rom_session/client.h>
#include <base/connection.h>
#include <base/printf.h>
namespace Genode {
class Rom_connection : public Connection<Rom_session>,
public Rom_session_client
{
public:
class Rom_connection_failed : public Parent::Exception { };
private:
Rom_session_capability _create_session(const char *filename, const char *label)
{
try {
return session("ram_quota=4K, filename=\"%s\", label=%s",
filename, label); }
catch (...) {
PERR("Could not open file \"%s\"", filename);
throw Rom_connection_failed();
}
}
public:
/**
* Constructor
*
* \param filename name of ROM file
* \param label initial session label
*
* \throw Rom_connection_failed
*/
Rom_connection(const char *filename, const char *label = "") :
Connection<Rom_session>(_create_session(filename, label)),
Rom_session_client(cap())
{ }
};
}
#endif /* _INCLUDE__ROM_SESSION__CONNECTION_H_ */

View File

@@ -0,0 +1,55 @@
/*
* \brief ROM session interface
* \author Norman Feske
* \date 2006-07-06
*
* A ROM session corresponds to an open file. The file name is specified as an
* argument on session creation.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROM_SESSION__ROM_SESSION_H_
#define _INCLUDE__ROM_SESSION__ROM_SESSION_H_
#include <dataspace/capability.h>
#include <session/session.h>
namespace Genode {
struct Rom_dataspace : Dataspace { };
typedef Capability<Rom_dataspace> Rom_dataspace_capability;
struct Rom_session : Session
{
static const char *service_name() { return "ROM"; }
virtual ~Rom_session() { }
/**
* Request dataspace containing the ROM session data
*
* \return capability to ROM dataspace
*
* The capability may be invalid.
*/
virtual Rom_dataspace_capability dataspace() = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_dataspace, Rom_dataspace_capability, dataspace);
GENODE_RPC_INTERFACE(Rpc_dataspace);
};
}
#endif /* _INCLUDE__ROM_SESSION__ROM_SESSION_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief Root capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROOT__CAPABILITY_H_
#define _INCLUDE__ROOT__CAPABILITY_H_
#include <base/capability.h>
#include <root/root.h>
namespace Genode { typedef Capability<Root> Root_capability; }
#endif /* _INCLUDE__ROOT__CAPABILITY_H_ */

View File

@@ -0,0 +1,38 @@
/*
* \brief Root client interface
* \author Norman Feske
* \date 2006-05-11
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROOT__CLIENT_H_
#define _INCLUDE__ROOT__CLIENT_H_
#include <root/capability.h>
#include <base/rpc_client.h>
namespace Genode {
struct Root_client : Rpc_client<Root>
{
explicit Root_client(Root_capability root)
: Rpc_client<Root>(root) { }
Session_capability session(Session_args const &args) {
return call<Rpc_session>(args); }
void upgrade(Session_capability session, Upgrade_args const &args) {
call<Rpc_upgrade>(session, args); }
void close(Session_capability session) {
call<Rpc_close>(session); }
};
}
#endif /* _INCLUDE__ROOT__CLIENT_H_ */

View File

@@ -0,0 +1,250 @@
/*
* \brief Generic root component implementation
* \author Norman Feske
* \date 2006-05-22
*
* This class is there for your convenience. It performs the common actions
* that must always be taken when creating a new session.
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROOT__COMPONENT_H_
#define _INCLUDE__ROOT__COMPONENT_H_
#include <root/root.h>
#include <base/rpc_server.h>
#include <base/heap.h>
#include <ram_session/ram_session.h>
#include <util/arg_string.h>
#include <base/printf.h>
namespace Genode {
/**
* Session creation policy for a single-client service
*/
class Single_client
{
private:
bool _used;
public:
Single_client() : _used(0) { }
void aquire(const char *args)
{
if (_used)
throw Root::Unavailable();
_used = true;
}
void release() { _used = false; }
};
/**
* Session-creation policy for a multi-client service
*/
struct Multiple_clients
{
void aquire(const char *args) { }
void release() { }
};
/**
* Template for implementing the root interface
*
* \param SESSION_TYPE session-component type to manage,
* derived from 'Rpc_object'
* \param POLICY session-creation policy
*
* The 'POLICY' template parameter allows for constraining the session
* creation to only one instance at a time (using the 'Single_session'
* policy) or multiple instances (using the 'Multiple_sessions' policy).
*
* The 'POLICY' class must provide the following two functions:
*
* :'aquire(const char *args)': is called with the session arguments
* at creation time of each new session. It can therefore implement
* a session-creation policy taking session arguments into account.
* If the policy denies the creation of a new session, it throws
* one of the exceptions defined in the 'Root' interface.
*
* :'release': is called at the destruction time of a session. It enables
* the policy to keep track of and impose restrictions on the number
* of existing sessions.
*
* The default policy 'Multiple_clients' imposes no restrictions on the
* creation of new sessions.
*/
template <typename SESSION_TYPE, typename POLICY = Multiple_clients>
class Root_component : public Rpc_object<Typed_root<SESSION_TYPE> >, private POLICY
{
private:
/*
* Entry point that manages the session objects
* created by this root interface
*/
Rpc_entrypoint *_ep;
/*
* Allocator for allocating session objects.
* This allocator must be used by the derived
* class when calling the 'new' operator for
* creating a new session.
*/
Allocator *_md_alloc;
protected:
/**
* Create new session (to be implemented by a derived class)
*
* Only a derived class knows the constructor arguments of
* a specific session. Therefore, we cannot unify the call
* of its 'new' operator and must implement the session
* creation at a place, where the required knowledge exist.
*
* In the implementation of this function, the heap, provided
* by 'Root_component' must be used for allocating the session
* object.
*
* \throw Allocator::Out_of_memory typically caused by the
* meta-data allocator
* \throw Root::Invalid_args typically caused by the
* session-component constructor
*/
virtual SESSION_TYPE *_create_session(const char *args) = 0;
/**
* Inform session about a quota upgrade
*
* Once a session is created, its client can successively extend
* its quota donation via the 'Parent::transfer_quota' function.
* This will result in the invokation of 'Root::upgrade' at the
* root interface the session was created with. The root interface,
* in turn, informs the session about the new resources via the
* '_upgrade_session' function. The default implementation is
* suited for sessions that use a static amount of resources
* accounted for at session-creation time. For such sessions, an
* upgrade is not useful. However, sessions that dynamically
* allocate resources on behalf of its client, should respond to
* quota upgrades by implementing this function.
*
* \param session session to upgrade
* \param args description of additional resources in the
* same format as used at session creation
*/
virtual void _upgrade_session(SESSION_TYPE *session, const char *args) { }
virtual void _destroy_session(SESSION_TYPE *session) {
destroy(_md_alloc, session); }
/**
* Return allocator to allocate server object in '_create_session()'
*/
Allocator *md_alloc() { return _md_alloc; }
Rpc_entrypoint *ep() { return _ep; }
public:
/**
* Constructor
*
* \param ep entry point that manages the sessions of this
* root interface.
* \param ram_session provider of dataspaces for the backing store
* of session objects and session data
*/
Root_component(Rpc_entrypoint *ep, Allocator *metadata_alloc)
: _ep(ep), _md_alloc(metadata_alloc) { }
/********************
** Root interface **
********************/
Session_capability session(Root::Session_args const &args)
{
if (!args.is_valid_string()) throw Root::Invalid_args();
POLICY::aquire(args.string());
/*
* We need to decrease 'ram_quota' by
* the size of the session object.
*/
size_t ram_quota = Arg_string::find_arg(args.string(), "ram_quota").long_value(0);
size_t const remaining_ram_quota = ram_quota - sizeof(SESSION_TYPE) -
md_alloc()->overhead(sizeof(SESSION_TYPE));
if (remaining_ram_quota < 0) {
PERR("Insufficient ram quota, provided=%zd, required=%zd",
ram_quota, sizeof(SESSION_TYPE) + md_alloc()->overhead(sizeof(SESSION_TYPE)));
throw Root::Quota_exceeded();
}
/*
* Deduce ram quota needed for allocating the session object from the
* donated ram quota.
*
* XXX the size of the 'adjusted_args' buffer should dependent
* on the message-buffer size and stack size.
*/
enum { MAX_ARGS_LEN = 256 };
char adjusted_args[MAX_ARGS_LEN];
strncpy(adjusted_args, args.string(), sizeof(adjusted_args));
char ram_quota_buf[64];
snprintf(ram_quota_buf, sizeof(ram_quota_buf), "%zd",
remaining_ram_quota);
Arg_string::set_arg(adjusted_args, sizeof(adjusted_args),
"ram_quota", ram_quota_buf);
SESSION_TYPE *s = 0;
try { s = _create_session(adjusted_args); }
catch (Allocator::Out_of_memory) { throw Root::Quota_exceeded(); }
return _ep->manage(s);
}
void upgrade(Session_capability session, Root::Upgrade_args const &args)
{
if (!args.is_valid_string()) throw Root::Invalid_args();
SESSION_TYPE *s =
dynamic_cast<SESSION_TYPE *>(_ep->obj_by_cap(session));
if (!s) return;
_upgrade_session(s, args.string());
}
void close(Session_capability session)
{
SESSION_TYPE *s =
dynamic_cast<SESSION_TYPE *>(_ep->obj_by_cap(session));
if (!s) return;
/* let the entry point forget the session object */
_ep->dissolve(s);
_destroy_session(s);
POLICY::release();
return;
}
};
}
#endif /* _INCLUDE__ROOT__COMPONENT_H_ */

93
base/include/root/root.h Normal file
View File

@@ -0,0 +1,93 @@
/*
* \brief Root interface
* \author Norman Feske
* \date 2006-05-11
*/
/*
* Copyright (C) 2006-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__ROOT__ROOT_H_
#define _INCLUDE__ROOT__ROOT_H_
#include <base/exception.h>
#include <base/rpc.h>
#include <base/rpc_args.h>
#include <session/capability.h>
namespace Genode {
struct Root
{
/*********************
** Exception types **
*********************/
class Exception : public ::Genode::Exception { };
class Unavailable : public Exception { };
class Quota_exceeded : public Exception { };
class Invalid_args : public Exception { };
typedef Rpc_in_buffer<160> Session_args;
typedef Rpc_in_buffer<160> Upgrade_args;
virtual ~Root() { }
/**
* Create session
*
* \throw Unavailable
* \throw Quota_exceeded
* \throw Invalid_args
*
* \return capability to new session
*/
virtual Session_capability session(Session_args const &args) = 0;
/**
* Extend resource donation to an existing session
*/
virtual void upgrade(Session_capability session, Upgrade_args const &args) = 0;
/**
* Close session
*/
virtual void close(Session_capability session) = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC_THROW(Rpc_session, Session_capability, session,
GENODE_TYPE_LIST(Unavailable, Quota_exceeded, Invalid_args),
Session_args const &);
GENODE_RPC_THROW(Rpc_upgrade, void, upgrade,
GENODE_TYPE_LIST(Invalid_args),
Session_capability, Upgrade_args const &);
GENODE_RPC(Rpc_close, void, close, Session_capability);
GENODE_RPC_INTERFACE(Rpc_session, Rpc_upgrade, Rpc_close);
};
/**
* Root interface supplemented with information about the managed
* session type
*
* This class template is used to automatically propagate the
* correct session type to 'Parent::announce()' when announcing
* a service.
*/
template <typename SESSION_TYPE>
struct Typed_root : Root
{
typedef SESSION_TYPE Session_type;
};
}
#endif /* _INCLUDE__ROOT__ROOT_H_ */

View File

@@ -0,0 +1,22 @@
/*
* \brief Session capability type
* \author Norman Feske
* \date 2008-08-16
*/
/*
* Copyright (C) 2008-2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__SESSION__CAPABILITY_H_
#define _INCLUDE__SESSION__CAPABILITY_H_
#include <base/capability.h>
#include <session/session.h>
namespace Genode { typedef Capability<Session> Session_capability; }
#endif /* _INCLUDE__SESSION__CAPABILITY_H_ */

View File

@@ -0,0 +1,38 @@
/*
* \brief Session
* \author Norman Feske
* \date 2011-05-15
*/
/*
* Copyright (C) 2011 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _INCLUDE__SESSION_H_
#define _INCLUDE__SESSION_H_
/*
* Each session interface declares an RPC interface and, therefore, relies on
* the RPC framework. By including 'base/rpc.h' here, we relieve the interfaces
* from including 'base/rpc.h' in addition to 'session/session.h'.
*/
#include <base/rpc.h>
namespace Genode {
/**
* Base class of session interfaces
*
* Each session interface must implement the function 'service_name'
* ! static const char *service_name();
* This function returns the name of the service provided via the session
* interface.
*/
class Session { };
}
#endif /* _INCLUDE__SESSION_H_ */

Some files were not shown because too many files have changed in this diff Show More