
Colorization of Grey Images by applying a
Convolutional Autoencoder on the Jetson Nano

Tim Niklas Witte and Dennis Konkol

Contents

1 Introduction . 1

2 Convolutional Autoencoder . 1
2.1 Convolutions . 1
2.2 Autoencoder . 2

3 Setup . 3
3.1 Software . 3
3.2 Hardware . 3

4 Training . 3
4.1 Model . 4

5 Optimizing the model to run on the Jetson Nano 4

6 Evaluation: Compare with Colorful Image Colorization 6

7 Conclusion . 8

References . 8

1 Introduction

Embedded GPUs such as the Jetson Nano provide limited hardware resources than
desktop/server GPUs. For example, the Jetson Nano has 128 CUDA cores and 4 GB
of video memory, compared to the NVIDIA GeForce RTX 3070 Ti which has 6144
CUDA cores and 8 GB of video memory. Inference done by massive artificial neural
networks (ANN) e.g. over 25.000.000 parameters on the Jetson Nano, becomes slow -
about 0.01 forward pass per second. An NVIDIA GeForce RTX 3070 Ti does 32 forward
passes through the same huge ANN, and this can be achieved within a second. This
paper presents a convolutional autoencoder for grey image colorization with 300.000
parameters optimized to run on embedded GPUs. In order to demonstrate the results
during runtime on the Jetson Nano, the live grey camera stream is colorized, as shown
in Figure 1.

Figure 1: OpenCV window on the Jetson Nano displaying the original, grey, colorized
camera stream and corresponding loss between original and colorized image.

This paper is organized as follows: The concept of a convolutional autoencoder will be
covered in section 2. Section 3 explains the necessary software and hardware setup on
the Jetson Nano. The training procedure, including the model architecture, is discussed
in section 4. Optimization techniques of our model considering running on the Jetson
Nano are presented in section 5. In section 6, the performance of our model is evaluated
by comparing the colorized images generated by our models and by a state-of-the-art
ANN for grey image colorization, which has about 25.000.000 parameters. Finally, the
final results are summed up in section 7.

2 Convolutional Autoencoder

2.1 Convolutions

Convolutions detect features and extract these from images by applying a filter kernel
which is a weight matrix. As shown in Figure 2, a convolution iterates a filter kernel
over the entire image. During each iteration, an area with the same size as the kernel
is processed by an element-wise multiplication followed by summing each value up,

1

representing the result for the area of this image. This area is shifted one step (depending
on side size) further to the right in the next step. The same processing step occurs again.

Figure 2: Concept of a convolution [3].

2.2 Autoencoder

Autoencoders are artificial neural networks used to learn features of unlabeled data. As
presented in Figure 3, the encoder part compresses the data by gradually decrease of the
layer size. The resulting embedding/code is passed to the decoder part responsible for
reconstructing it. In the decoder, the layer size increases per layer. Overall, the input X
and output X’ shall be the same.

Figure 3: An Autoencoder compresses and decompresses the data [4].

Instead of fully connected layers, a convolutional autoencoder applies convolutions in
the encoder and transposes convolutions in the decoder.

2

3 Setup

3.1 Software

TensorFlow was installed following the official guide from NVIDIA [5]. Furthermore, it is
not recommended to install the current version of OpenCV via pip3 due to compatibility
issues with the CSI camera. The CSI camera i.e. the gstream can only be accessed with
an OpenCV version lower than 3.3.1. This version was installed manually by down-
loading the source code from the official website and compiling it [6]. Besides, for speed
purposes, the maximal performance mode was enabled by the command sudo nvpmodel

-m 0. In order to enable the Jetson Clock, the command sudo jetson clocks was used.

3.2 Hardware

The CSI camera was plugged into the corresponding slot in the Jetson Nano. Further-
more, the HDMI display shows the OpenCV window as presented in Figure 1.

4 Training

Figure 4: Train and test loss during
training.

At the beginning of training our model, we used
the common RGB color space. In other words, the
input was the grey scaled image, and the output
was the RGB image. However, we lost too much
information in the picture. So the general input
picture was detectable but with a lot of ”compres-
sion”. The reason for this is that for one pixel, all
three values of RGB are responsible for the bright-
ness of that pixel. So it is possible to get the right
color but not the correct brightness. That is why
we switched to the CIE LAB color space. Here we
also have three values for each pixel, the L chan-
nel for the ’brightness’ and A and B as the color
channel. The L channel is like the grayscale image
for the model. The model’s output is two values,
the A and B channels. So with the combination of
the given A, B, and our old L values, we get the
colored image. We get an overall correct image because of the kept L channel, even if
the colors would not match the original image.
The model was trained for 13 epochs (in total: 15 hours) with the ImageNet2012

dataset. It contains ca. 1.300.000 training images and 300.000 validation images used
for test data. As presented in Figure 4 the model was successfully trained to convergence
because, after about ten epochs, the train loss does not change significantly (< 0.0001)
compared with the loss to the next epoch.

3

4.1 Model

As shown in Listing 1, our convolutional autoencoder has about 300.000 parameters.
The model’s memory size is about 1.2 MB (300000 ·4 Byte). Encoder and decoder parts
of the ANN are equally balanced due to having almost the same amount of parameters.

Listing 1: Parameter amount of our model (output of summary() call).
Model: "autoencoder"

Layer (type) Output Shape Param #

===
encoder (Encoder) multiple 148155

decoder (Decoder) multiple 150145

===
Total params: 298 ,302
Trainable params: 297 ,210
Non -trainable params: 1,092

Figure 5 and 6 present the structure of the layers contained in the encoder and decoder.
The encoder receives a 256x256 pixel grey image. Due to the grey color, there is only one
color channel. Convolutions can be seen as feature extractors. At the first convolution
in the encoder (see Conv2D 0 in Figure 5), there are 75 features extracted from this grey
image. These extracted features are represented as channels (similar to color channels
but not colors) called feature maps. Literally speaking, a feature map could be seen
as a heatmap in which the pixel belonging to the corresponding feature has a high
magnitude. Due to the stride size of 2, the size of these features maps is halved. A
convolution operation is followed by a batch normalization layer and an activation layer
(the drive is normalized before its goes into the activation function). In the encoder this
occurs four times. With each step, the amount of filters increases.
The resulting embedding is passed into the decoder. Instead of convolutions reducing

the feature map size, transpose convolutions increase the feature map size by a factor
of 2. Like the encoder, a transpose convolution is followed by batch normalization and
activation layers. In the decoder this occurs four times. With each step, the amount of
filters decreases. Except for the last transpose convolution, which is a bottleneck layer:
It decreases the amount of filters from 75 to 2 (a and b channel) and keeps the feature
map size constant (stride size = 1).

5 Optimizing the model to run on the Jetson Nano

Figure 7: Concept of a residual
connection [7].

Residual connections also called skip connections in
neural networks, face the vanishing gradient prob-
lem (tiny weight adjustments [8]) in the backprop-
agation algorithm [9]. As shown in Figure 7, the
output x of a layer is added two layers further to the
input of the third layer [9]. The output x must be

4

Figure 5: Encoder layers. Figure 6: Decoder layers.

saved due to it is used in a later time step. There-
fore, residual connections need a lot of GPU mem-
ory, causing a outsource of a part of other data
needed for the model. To speed up the FPS, our
model does not have residual connections.
As mentioned in the first section, the Jet-

son Nano has 128 CUDA cores. The amount of
filters per layer does not exceed this number of cores. This limitation enables Tensor-
Flow simple scheduling of a feature map calculation to a specific core during the output
calculation of a layer. In other words, there are no cores that must do a second filter map
calculation after the first one while other cores are idling. The calculation of a previous
layer must be finished before starting with the next layer. Furthermore, limiting the
amount of filer reduces the model size.
In Deep Learning, overparameterization often occurs: As a result, the number of train-

able parameters is much larger than the number of training examples. As a consequence,
the model tends to overfit the data [10]. The opposite applies to our model. Literally
speaking, our model is ”under-parameterized” - Due to there being only 300.000 param-

5

eters on about 1.3 million training images, our model is forced to generalize as strong
as possible during training. To archive such generalization the model is trained multiple
epochs (iteration over the entire training dataset). It is assumed that such generaliza-
tion results in similar results compared with a model which has considerable amounts
of parameters. In other words, the higher costs for training a small model compared
with a larger model shall result in similar results but the latency to generate the result
with the smaller model is lower. Besides, the non-existence of skip connections increases
the chance of vanishing gradients during training. Although, multiple training epochs
compensate this problem. To clarify, millions of tiny weight changes sum up into an
effective weight adjustment.

6 Evaluation: Compare with Colorful Image Colorization

As demonstrated in Listing 2, the Colorful Image Colorization model from Richard
Zhang et al. has about 25 million parameters [11]. The model presented in this paper
is about 80 times smaller. Its input shape is 256x256x1 and the same as our model.

Listing 2: Parameter amount of the Colorful Image Colorization model (output of
summary() call).

Model: "ColorfulImageColorization"

Layer (type) Output Shape Param #

===
[...]

===
Total params: 24 ,793 ,081
Trainable params: 24 ,788 ,345
Non -trainable params: 4,736

Figure 8 shows grey images colorized by the Colorful Image Colorization model [11]
and by our model. Our model tends to colorize the images with a grey touch and the
colors are not saturated compared with the Colorful Image Colorization model.
Our model does regression by predicting the ab values. The model output shape

is 256x256x2 (see tanh 3 in Figure 6). In contrast to the model from Richard Zhang
et al., classification is applied here: There is a probability distribution for each pixel
approximating which color it may be. For demonstration purposes, there were 313 colors
available. As a consequence, the model output shape is 256x256x313 [11]. Compared to
our model, the larger output shape requires a more extensive (ca. 80 times) amount of
parameters.
Considering the loss as shown in Figure 9, our model outperforms the model from

Richard Zhang et al. However, the euclidean loss (mean squared error) L2(ŷ, y) for the
prediction y and the target (also called ground truth) ŷ was applied:

L2(ŷ, y) =
1

2
·
∑
h,w

||yh,w − ŷh,w||2

6

Figure 8: Colorized images generated by the Colorful Image Colorization model from
Richard Zhang et al. and by our model.

7

Figure 9: Loss based on colorized images by the Colorful Image Colorization model from
Richard Zhang et al. and by our model.

The loss function is ambiguous for the colorization problem. Consider the prediction
y for a single pixel with a loss of d: There are two corresponding targets ŷ = y ± d
possible instead of a single one. Furthermore, consider a set of pixels. For each of these
pixels, a corresponding color will be predicted. The optimal solution is the mean of all
pixels within this set. In the case of color prediction, this averaging causes a grey bias
and desaturated colors [11].

7 Conclusion

Our model predicts the most possible color by applying regression. In contrast to the
model proposed by Richard Zhang et al. which classifies the most possible color. Due to
the one-hot encoding applied for these color classifications, over 80 times more param-
eters are needed as required for our model, considering the parameter balance between
hidden layers and output layers. Comparing the colorized images generated by an ANN
based on classification and by regression, regression-based ANN tends to colorize images
with a grey touch and unsaturated colors because of an ambiguous loss function for
the colorization problem. However, the results are acceptable considering the difference
in the number of parameters between the two models. Furthermore, a GPU cannot
ultimately accelerate a classification-based model because the last part of the model is
a sampling process. This process is an argmax operation over 313 possible colors (see
model shape) which runs on the CPU. Note that transferring data from GPU to CPU
could be seen as a performance bottleneck.
Overall, our model archives about 10 FPS on the Jetson Nanos. Running the Richard

Zhang et al. model will result in less than 0.01 FPS.

8

References

[1] “Jetson Nano Developer Kit.” https://developer.nvidia.com/embedded/jetson-
nano-developer-kit. Accessed: 2022-03-24.

[2] “GeForce RTX 3070 Familiy - Specs.” https://www.nvidia.com/en-
us/geforce/graphics-cards/30-series/rtx-3070-3070ti/. Accessed: 2022-03-24.

[3] “Animation of a Convolution.” https://spinkk.github.io/singlekernel nopadding.html.
Accessed: 2022-03-24.

[4] “Schematic structure of an autoencoder with 3 fully connected hidden lay-
ers. The code (z, or h for reference in the text) is the most internal layer..”
https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder structure.png.
Accessed: 2022-03-24.

[5] “Official TensorFlow for Jetson Nano!.” https://forums.developer.nvidia.com/t/official-
tensorflow-for-jetson-nano/71770. Accessed: 2022-03-24.

[6] “OpenCV - releases.” https://opencv.org/releases/. Accessed: 2022-03-24.

[7] “Figure of a residual connection.” https://i.stack.imgur.com/d9HNk.png. Accessed:
2022-03-24.

[8] H. H. Tan and K. H. Lim, “Vanishing gradient mitigation with deep learning neural
network optimization,” in 2019 7th International Conference on Smart Computing
Communications (ICSCC), pp. 1–4, 2019.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2015.

[10] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in overparameter-
ized neural networks, going beyond two layers,” 2018.

[11] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” 2016.

9

