mirror of
https://github.com/denshooter/gpu_colorization.git
synced 2026-01-21 12:32:57 +01:00
46 lines
1.4 KiB
Python
46 lines
1.4 KiB
Python
import tensorflow as tf
|
|
import numpy as np
|
|
|
|
from Encoder import *
|
|
from Decoder import *
|
|
|
|
class Autoencoder(tf.keras.Model):
|
|
def __init__(self):
|
|
super(Autoencoder, self).__init__()
|
|
|
|
self.encoder = Encoder()
|
|
self.decoder = Decoder()
|
|
|
|
self.loss_function = tf.keras.losses.MeanSquaredError()
|
|
|
|
self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
|
|
|
|
|
|
@tf.function
|
|
def call(self, x, training=False):
|
|
embedding = self.encoder(x, training)
|
|
decoded = self.decoder(embedding, training)
|
|
return decoded
|
|
|
|
@tf.function
|
|
def train_step(self, input, target):
|
|
|
|
with tf.GradientTape() as tape:
|
|
prediction = self(input, training=True)
|
|
loss = self.loss_function(target, prediction)
|
|
|
|
gradients = tape.gradient(loss, self.trainable_variables)
|
|
self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
|
|
return loss
|
|
|
|
def test(self, test_data):
|
|
# test over complete test data
|
|
test_loss_aggregator = []
|
|
for input, target in test_data: # ignore label
|
|
prediction = self(input)
|
|
|
|
sample_test_loss = self.loss_function(target, prediction)
|
|
test_loss_aggregator.append(sample_test_loss.numpy())
|
|
|
|
test_loss = tf.reduce_mean(test_loss_aggregator)
|
|
return test_loss |