mirror of
https://github.com/mmueller41/genode.git
synced 2026-01-21 12:32:56 +01:00
c560285d88cfd2f6ab122ab6952d8596c74432fa
This patch adds special handling for lib/<libname> arguments to the build system, which supersedes the former LIB=<libname> mechanism. Whereas the old mechanism was limited to a single library, the new convention allows multiple library arguments, similar to regular targets. The change brings the two immediate benefits. First, the streamlining of library and target arguments allows for the building of libraries via the 'build' command of the run tool. Second, it alleviates the need for pseudo target.mk files for building shared libraries that have no direct dependencies, in particular VFS plugins. Since this change eases the explicit creation of shared libraries from run scripts, we may reconsider the automatic implicit building of shared libraries driven by targets. E.g., while developing a Qt application, a run script could import the Qt libraries from the depot and combine those with the developed (fresh built) target without triggering the build of the Qt libraries in the build directory. When issueing 'make' without arguments, all targets are built. This patch applies this behavior to libraries as well, thereby removing the need for the base/src/lib/target.mk pseudo target as used by the CI tools to build all libraries. Note that target.mk files located under src/lib/ are no longer reachable. Therefore, all run scripts that used to trigger the build of a shared library via a pseudo target must be adapted. E.g., 'build lib/vfs/tap' must be replaced by 'build lib/vfs_tap'. With this patch, the LIB=<libname> option is no longer supported. Fixes #4599
=================================
Genode Operating System Framework
=================================
This is the source tree of the reference implementation of the Genode OS
architecture. For a general overview about the architecture, please refer to
the project's official website:
:Official project website for the Genode OS Framework:
[https://genode.org/documentation/general-overview]
The current implementation can be compiled for 8 different kernels: Linux,
L4ka::Pistachio, L4/Fiasco, OKL4, NOVA, Fiasco.OC, seL4, and a custom "hw"
microkernel for running Genode without a 3rd-party kernel. Whereas the Linux
version serves us as development vehicle and enables us to rapidly develop the
generic parts of the system, the actual target platforms of the framework are
microkernels. There is no "perfect" microkernel - and neither should there be
one. If a microkernel pretended to be fit for all use cases, it wouldn't be
"micro". Hence, all microkernels differ in terms of their respective features,
complexity, and supported hardware architectures.
Genode allows the use of each of the kernels listed above with a rich set of
device drivers, protocol stacks, libraries, and applications in a uniform way.
For developers, the framework provides an easy way to target multiple different
kernels instead of tying the development to a particular kernel technology. For
kernel developers, Genode contributes advanced workloads, stress-testing their
kernel, and enabling a variety of application use cases that would not be
possible otherwise. For users and system integrators, it enables the choice of
the kernel that fits best with the requirements at hand for the particular
usage scenario.
Documentation
#############
The primary documentation is the book "Genode Foundations", which is available
on the front page of Genode website:
:Download the book "Genode Foundations":
[https://genode.org]
The book describes Genode in a holistic and comprehensive way. It equips you
with a thorough understanding of the architecture, assists developers with the
explanation of the development environment and system configuration, and
provides a look under the hood of the framework. Furthermore, it contains the
specification of the framework's programming interface.
The project has a quarterly release cycle. Each version is accompanied with
detailed release documentation, which is available at the documentation
section of the project website:
:Release documentation:
[https://genode.org/documentation/release-notes/]
Directory overview
##################
The source tree is composed of the following subdirectories:
:'doc':
This directory contains general documentation along with a comprehensive
collection of release notes.
:'repos':
This directory contains the source code, organized in so-called source-code
repositories. Please refer to the README file in the 'repos' directory to
learn more about the roles of the individual repositories.
:'tool':
Source-code management tools and scripts. Please refer to the README file
contained in the directory.
:'depot':
Directory used by Genode's package-management tools. It contains the public
keys and download locations of software providers.
Additional hardware support
###########################
The framework supports a variety of hardware platforms such as different ARM
SoC families via supplemental repositories.
:Repositories maintained by Genode Labs:
[https://github.com/orgs/genodelabs/repositories]
Additional community-maintained components
##########################################
The components found within the main source tree are complemented by a growing
library of additional software, which can be seamlessly integrated into Genode
system scenarios.
:Genode-world repository:
[https://github.com/genodelabs/genode-world]
Contact
#######
The best way to get in touch with Genode developers and users is the project's
mailing list. Please feel welcome to join in!
:Genode Mailing Lists:
[https://genode.org/community/mailing-lists]
Commercial support
##################
The driving force behind the Genode OS Framework is the German company Genode
Labs. The company offers commercial licensing, trainings, support, and
contracted development work:
:Genode Labs website:
[https://www.genode-labs.com]
Languages
C++
73.6%
C
18.1%
Makefile
4.5%
Tcl
1.4%
PHP
0.8%
Other
1.4%